| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- from collections import defaultdict
- import numpy as np
- from numpy.testing import assert_array_almost_equal
- from sklearn.utils.graph import single_source_shortest_path_length
- def floyd_warshall_slow(graph, directed=False):
- N = graph.shape[0]
- # set nonzero entries to infinity
- graph[np.where(graph == 0)] = np.inf
- # set diagonal to zero
- graph.flat[:: N + 1] = 0
- if not directed:
- graph = np.minimum(graph, graph.T)
- for k in range(N):
- for i in range(N):
- for j in range(N):
- graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j])
- graph[np.where(np.isinf(graph))] = 0
- return graph
- def generate_graph(N=20):
- # sparse grid of distances
- rng = np.random.RandomState(0)
- dist_matrix = rng.random_sample((N, N))
- # make symmetric: distances are not direction-dependent
- dist_matrix = dist_matrix + dist_matrix.T
- # make graph sparse
- i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2))
- dist_matrix[i] = 0
- # set diagonal to zero
- dist_matrix.flat[:: N + 1] = 0
- return dist_matrix
- def test_shortest_path():
- dist_matrix = generate_graph(20)
- # We compare path length and not costs (-> set distances to 0 or 1)
- dist_matrix[dist_matrix != 0] = 1
- for directed in (True, False):
- if not directed:
- dist_matrix = np.minimum(dist_matrix, dist_matrix.T)
- graph_py = floyd_warshall_slow(dist_matrix.copy(), directed)
- for i in range(dist_matrix.shape[0]):
- # Non-reachable nodes have distance 0 in graph_py
- dist_dict = defaultdict(int)
- dist_dict.update(single_source_shortest_path_length(dist_matrix, i))
- for j in range(graph_py[i].shape[0]):
- assert_array_almost_equal(dist_dict[j], graph_py[i, j])
|