| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- from typing import Dict, Iterator, List, Optional, Tuple, Union
- from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
- from tokenizers.models import BPE
- from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
- from .base_tokenizer import BaseTokenizer
- class ByteLevelBPETokenizer(BaseTokenizer):
- """ByteLevelBPETokenizer
- Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
- """
- def __init__(
- self,
- vocab: Optional[Union[str, Dict[str, int]]] = None,
- merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
- add_prefix_space: bool = False,
- lowercase: bool = False,
- dropout: Optional[float] = None,
- unicode_normalizer: Optional[str] = None,
- continuing_subword_prefix: Optional[str] = None,
- end_of_word_suffix: Optional[str] = None,
- trim_offsets: bool = False,
- ):
- if vocab is not None and merges is not None:
- tokenizer = Tokenizer(
- BPE(
- vocab,
- merges,
- dropout=dropout,
- continuing_subword_prefix=continuing_subword_prefix or "",
- end_of_word_suffix=end_of_word_suffix or "",
- )
- )
- else:
- tokenizer = Tokenizer(BPE())
- # Check for Unicode normalization first (before everything else)
- normalizers = []
- if unicode_normalizer:
- normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
- if lowercase:
- normalizers += [Lowercase()]
- # Create the normalizer structure
- if len(normalizers) > 0:
- if len(normalizers) > 1:
- tokenizer.normalizer = Sequence(normalizers)
- else:
- tokenizer.normalizer = normalizers[0]
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
- parameters = {
- "model": "ByteLevelBPE",
- "add_prefix_space": add_prefix_space,
- "lowercase": lowercase,
- "dropout": dropout,
- "unicode_normalizer": unicode_normalizer,
- "continuing_subword_prefix": continuing_subword_prefix,
- "end_of_word_suffix": end_of_word_suffix,
- "trim_offsets": trim_offsets,
- }
- super().__init__(tokenizer, parameters)
- @staticmethod
- def from_file(vocab_filename: str, merges_filename: str, **kwargs):
- vocab, merges = BPE.read_file(vocab_filename, merges_filename)
- return ByteLevelBPETokenizer(vocab, merges, **kwargs)
- def train(
- self,
- files: Union[str, List[str]],
- vocab_size: int = 30000,
- min_frequency: int = 2,
- show_progress: bool = True,
- special_tokens: List[Union[str, AddedToken]] = [],
- ):
- """Train the model using the given files"""
- trainer = trainers.BpeTrainer(
- vocab_size=vocab_size,
- min_frequency=min_frequency,
- show_progress=show_progress,
- special_tokens=special_tokens,
- initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
- )
- if isinstance(files, str):
- files = [files]
- self._tokenizer.train(files, trainer=trainer)
- def train_from_iterator(
- self,
- iterator: Union[Iterator[str], Iterator[Iterator[str]]],
- vocab_size: int = 30000,
- min_frequency: int = 2,
- show_progress: bool = True,
- special_tokens: List[Union[str, AddedToken]] = [],
- length: Optional[int] = None,
- ):
- """Train the model using the given iterator"""
- trainer = trainers.BpeTrainer(
- vocab_size=vocab_size,
- min_frequency=min_frequency,
- show_progress=show_progress,
- special_tokens=special_tokens,
- initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
- )
- self._tokenizer.train_from_iterator(
- iterator,
- trainer=trainer,
- length=length,
- )
|