| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- _overwrite_module_params_on_conversion: bool = False
- _swap_module_params_on_conversion: bool = False
- def set_overwrite_module_params_on_conversion(value: bool) -> None:
- """
- Sets whether to assign new tensors to the parameters instead of changing the
- existing parameters in-place when converting an ``nn.Module``.
- When enabled, the following methods will assign new parameters to the module:
- #. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
- #. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
- #. :meth:`nn.Module.to`
- #. :meth:`nn.Module.to_empty`
- Args:
- value (bool): Whether to assign new tensors or not.
- """
- global _overwrite_module_params_on_conversion
- _overwrite_module_params_on_conversion = value
- def get_overwrite_module_params_on_conversion() -> bool:
- """
- Returns whether to assign new tensors to the parameters instead of changing the
- existing parameters in-place when converting an :class:`torch.nn.Module`. Defaults to ``False``.
- See :func:`~torch.__future__.set_overwrite_module_params_on_conversion` for more information.
- """
- return _overwrite_module_params_on_conversion
- def set_swap_module_params_on_conversion(value: bool) -> None:
- """
- Sets whether to use :func:`~torch.utils.swap_tensors` instead of setting ``.data`` to
- change the existing parameters in-place when converting an ``nn.Module`` and instead
- of ``param.copy_(state_dict[key])`` when loading a state dict into an ``nn.Module``.
- .. note::
- This function takes precedence over :func:`~torch.__future__.get_overwrite_module_params_on_conversion`
- When enabled, the following methods will swap the existing parameters in-place:
- #. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
- #. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
- #. :meth:`nn.Module.to`
- #. :meth:`nn.Module.to_empty`
- #. :meth:`nn.Module.load_state_dict`
- The semantics for :meth:`~nn.Module.load_state_dict` when this is set are as follows:
- #. For each parameter/buffer, its corresponding ``state_dict['key']`` is transformed via
- :meth:`~torch.Tensor.module_load` (i.e. ``res = param.module_load(state_dict['key'])``)
- #. If necessary, ``res`` will be wrapped in an :class:`~nn.Parameter`
- #. The parameter/buffer in the module will be swapped via :func:`~torch.utils.swap_tensors`
- with ``res``
- Args:
- value (bool): Whether to use :func:`~torch.utils.swap_tensors` or not.
- """
- global _swap_module_params_on_conversion
- _swap_module_params_on_conversion = value
- def get_swap_module_params_on_conversion() -> bool:
- """
- Returns whether to use :func:`~torch.utils.swap_tensors` instead of setting .data to
- change the existing parameters in-place when converting an ``nn.Module``. Defaults to ``False``.
- See :func:`~torch.__future__.set_swap_module_params_on_conversion` for more information.
- """
- return _swap_module_params_on_conversion
|