| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872 |
- # mypy: allow-untyped-defs
- import functools
- import numbers
- import operator
- import sys
- from enum import Enum
- from functools import partial, reduce
- from itertools import chain, product
- from typing import Any, Callable, cast, Iterable, List, Optional, Tuple, Union
- import torch
- import torch._prims as prims
- import torch._prims_common as utils
- import torch.nn.functional as F
- from torch import sym_float, sym_int, Tensor
- from torch._decomp import register_decomposition
- from torch._higher_order_ops.out_dtype import out_dtype
- from torch._prims_common import (
- IntLike,
- NumberType,
- suggest_memory_format,
- TensorLike,
- TensorSequenceType,
- )
- from torch._prims_common.wrappers import (
- _maybe_convert_to_dtype,
- _maybe_resize_out,
- _safe_copy_out,
- out_wrapper,
- )
- from torch.utils import _pytree as pytree
- from torch.utils._pytree import tree_map
- DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined]
- # None of these functions are publicly accessible; get at them
- # from torch._decomps
- __all__: List[str] = []
- aten = torch._ops.ops.aten
- class Reduction(Enum):
- NONE = 0
- MEAN = 1
- SUM = 2
- # This wraps a decomposition and performs various type promotion logic within it, depending on the strategy provided
- # We're currently re-using ELEMENTWISE_TYPE_PROMOTION_KIND, although some of the usages are on non-elementwise ops
- # Will need to validate the non-elementwise uses
- def type_casts(
- f: Callable,
- type_promotion: utils.ELEMENTWISE_TYPE_PROMOTION_KIND,
- compute_dtype_only: bool = False,
- ):
- @functools.wraps(f)
- def inner(*args, **kwargs):
- flat_args = [
- x for x in pytree.arg_tree_leaves(*args, **kwargs) if isinstance(x, Tensor)
- ]
- computation_dtype, result_dtype = utils.elementwise_dtypes(
- *flat_args, type_promotion_kind=type_promotion
- )
- # TODO: pretty sure this is not quite right
- def increase_prec(x):
- if isinstance(x, Tensor):
- return x.to(computation_dtype)
- else:
- return x
- def decrease_prec(x):
- if isinstance(x, Tensor):
- return x.to(result_dtype)
- else:
- return x
- r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs))
- if compute_dtype_only:
- return r
- else:
- return tree_map(decrease_prec, r)
- return inner
- compute_only_pw_cast_for_opmath = partial(
- type_casts,
- type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
- compute_dtype_only=True,
- )
- pw_cast_for_opmath = partial(
- type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
- )
- pw_cast_for_int_to_real = partial(
- type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
- )
- # This expands x until x.dim() == dim. Might be useful as an operator
- def _unsqueeze_to_dim(x: Tensor, dim: int) -> Tensor:
- for _ in range(dim - x.dim()):
- x = x.unsqueeze(-1)
- return x
- @register_decomposition(aten.tanh_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def tanh_backward(out_grad: Tensor, y: Tensor):
- return out_grad * (1 - y * y).conj_physical()
- @register_decomposition(aten.sigmoid_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def sigmoid_backward(out_grad: Tensor, y: Tensor):
- return out_grad * (y * (1 - y)).conj_physical()
- @register_decomposition(aten.softplus_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def softplus_backward(out_grad: Tensor, x: Tensor, beta: float, threshold: float):
- z = (x * beta).exp()
- return torch.where((x * beta) > threshold, out_grad, out_grad * z / (z + 1.0))
- @register_decomposition(aten.elu_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def elu_backward(
- grad_output: Tensor,
- alpha: float,
- scale: float,
- input_scale: float,
- is_result: bool,
- self_or_result: Tensor,
- ):
- negcoef = alpha * scale
- poscoef = scale
- negiptcoef = input_scale
- if is_result:
- return torch.where(
- self_or_result <= 0,
- grad_output * negiptcoef * (self_or_result + negcoef),
- grad_output * poscoef,
- )
- else:
- return torch.where(
- self_or_result <= 0,
- grad_output * negiptcoef * negcoef * torch.exp(self_or_result * negiptcoef),
- grad_output * poscoef,
- )
- @register_decomposition([aten.fill.Scalar])
- def fill_scalar(self, value):
- return torch.full_like(self, value)
- @register_decomposition([aten.fill.Tensor])
- def fill_tensor(self, value: Tensor):
- torch._check(
- value.dim() == 0,
- lambda: f"fill only supports 0-dimension value tensor but got tensor with {value.dim()} dimensions",
- )
- return aten.copy(self, value)
- @register_decomposition(aten.hardsigmoid)
- @out_wrapper()
- @pw_cast_for_opmath
- def hardsigmoid(self: Tensor) -> Tensor:
- return torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6
- @register_decomposition(aten.hardsigmoid_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def hardsigmoid_backward(grad_output: Tensor, self: Tensor):
- return torch.where(
- (self > -3.0) & (self < 3.0),
- grad_output * (1.0 / 6.0),
- 0.0,
- )
- @register_decomposition(aten.hardtanh_backward)
- @out_wrapper("grad_input")
- def hardtanh_backward(
- grad_output: Tensor, self: Tensor, min_val: float, max_val: float
- ):
- return torch.where((self <= min_val) | (self >= max_val), 0.0, grad_output)
- @register_decomposition(aten.hardswish)
- @out_wrapper()
- @pw_cast_for_opmath
- def hardswish(self: Tensor) -> Tensor:
- return self * torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6
- @register_decomposition(aten.hardswish_backward)
- @out_wrapper()
- @pw_cast_for_opmath
- def hardswish_backward(grad_output: Tensor, self: Tensor) -> Tensor:
- return torch.where(
- self < -3,
- 0.0,
- torch.where(self <= 3, grad_output * ((self / 3) + 0.5), grad_output),
- )
- @register_decomposition(aten.threshold_backward)
- @out_wrapper("grad_input")
- def threshold_backward(grad_output: Tensor, self: Tensor, threshold: float):
- return torch.where(self <= threshold, 0, grad_output)
- @register_decomposition(aten.leaky_relu_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def leaky_relu_backward(
- grad_output: Tensor, self: Tensor, negative_slope: float, self_is_result: bool
- ):
- return torch.where(self > 0, grad_output, grad_output * negative_slope)
- @register_decomposition(aten.gelu_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def gelu_backward(grad: Tensor, self: Tensor, approximate: str = "none"):
- M_SQRT2 = 1.41421356237309504880
- M_SQRT1_2 = 0.70710678118654752440
- M_2_SQRTPI = 1.12837916709551257390
- if approximate == "tanh":
- kBeta = M_SQRT2 * M_2_SQRTPI * 0.5
- kKappa = 0.044715
- x_sq = self * self
- x_cube = x_sq * self
- inner = kBeta * (self + kKappa * x_cube)
- tanh_inner = torch.tanh(inner)
- left = 0.5 * self
- right = 1 + tanh_inner
- left_derivative = 0.5 * right
- tanh_derivative = 1 - tanh_inner * tanh_inner
- inner_derivative = kBeta * (1 + 3 * kKappa * x_sq)
- right_derivative = left * tanh_derivative * inner_derivative
- return grad * (left_derivative + right_derivative)
- else:
- kAlpha = M_SQRT1_2
- kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5
- cdf = 0.5 * (1 + torch.erf(self * kAlpha))
- pdf = kBeta * torch.exp(self * self * -0.5)
- return grad * (cdf + self * pdf)
- @register_decomposition(aten.mish_backward)
- @pw_cast_for_opmath
- def mish_backward(grad_output: Tensor, input: Tensor):
- input_tanh_softplus = torch.tanh(F.softplus(input))
- input_sigmoid = torch.sigmoid(input)
- out = input * input_sigmoid * (1 - input_tanh_softplus * input_tanh_softplus)
- return grad_output * (input_tanh_softplus + out)
- @register_decomposition(aten.silu)
- @out_wrapper()
- @pw_cast_for_opmath
- def silu(self: Tensor) -> Tensor:
- return self * torch.sigmoid(self)
- @register_decomposition(aten.silu_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def silu_backward(grad_output: Tensor, self: Tensor) -> Tensor:
- sigmoid = 1 / (1 + torch.exp(-self))
- return grad_output * sigmoid * (1 + self * (1 - sigmoid))
- @register_decomposition(aten._prelu_kernel)
- def _prelu_kernel(self: Tensor, weight: Tensor) -> Tensor:
- return torch.where(self > 0, self, weight * self)
- @register_decomposition(aten._prelu_kernel_backward)
- def _prelu_kernel_backward(
- grad_output: Tensor,
- self: Tensor,
- weight: Tensor,
- ) -> Tuple[Tensor, Tensor]:
- input_grad = torch.where(self > 0, grad_output, weight * grad_output)
- weight_grad = torch.where(self > 0, 0.0, self * grad_output)
- return (input_grad, weight_grad)
- @register_decomposition(aten.rrelu_with_noise)
- @aten.rrelu_with_noise.default.py_impl(DispatchKey.AutogradCUDA)
- @out_wrapper()
- @pw_cast_for_opmath
- def rrelu_with_noise(
- self: Tensor,
- noise: Tensor,
- lower: float = 0.125,
- upper: float = 0.3333333333333333,
- training: bool = False,
- generator: Optional[torch.Generator] = None,
- ) -> Tensor:
- assert generator is None
- if training:
- not_positive = self <= 0
- r = aten.uniform(self, lower, upper)
- output = torch.where(not_positive, self * r, self)
- noise.copy_(torch.where(not_positive, r, 1))
- return output
- else:
- negative_slope = (lower + upper) / 2
- return aten.leaky_relu(self, negative_slope)
- @register_decomposition(aten.rrelu_with_noise_)
- @aten.rrelu_with_noise_.default.py_impl(DispatchKey.AutogradCUDA)
- @pw_cast_for_opmath
- def rrelu_with_noise_(
- self: Tensor,
- noise: Tensor,
- lower: float = 0.125,
- upper: float = 0.3333333333333333,
- training: bool = False,
- generator: Optional[torch.Generator] = None,
- ) -> Tensor:
- return self.copy_(rrelu_with_noise(self, noise, lower, upper, training, generator))
- @register_decomposition(aten.rrelu_with_noise_backward)
- @out_wrapper()
- @pw_cast_for_opmath
- def rrelu_with_noise_backward(
- grad_output: Tensor,
- self: Tensor,
- noise: Tensor,
- lower: float,
- upper: float,
- training: bool,
- self_is_result: bool,
- ) -> Tensor:
- if training and upper - lower > 1e-6:
- return grad_output.mul(noise)
- else:
- negative_slope = (lower + upper) / 2
- return aten.leaky_relu_backward(
- grad_output, self, negative_slope, self_is_result
- )
- @register_decomposition(aten.log_sigmoid_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def log_sigmoid_backward(grad_output: Tensor, self: Tensor, buffer: Tensor) -> Tensor:
- in_negative = self < 0
- max_deriv = torch.where(in_negative, 1, 0)
- sign = torch.where(in_negative, 1, -1)
- z = torch.exp(-torch.abs(self))
- return grad_output * (max_deriv - sign * (z / (1 + z)))
- # CPU has a special formula that uses buffer, but disabled for convenience sake
- # return (max_deriv - sign * (buffer / (1 + buffer))) * grad_output
- def apply_loss_reduction(loss: Tensor, reduction: int):
- if reduction == Reduction.MEAN.value:
- return torch.mean(loss)
- elif reduction == Reduction.SUM.value:
- return torch.sum(loss)
- else:
- return loss
- def to_real_dtype(dtype: torch.dtype):
- if dtype == torch.complex32:
- return torch.float16
- elif dtype == torch.complex64:
- return torch.float32
- elif dtype == torch.complex128:
- return torch.float64
- # TODO: None of these loss castings are quite correct, see
- # https://github.com/pytorch/pytorch/issues/76870. Also, the ATen kernels
- # perform the pointwise portion in opmath, but don't maintain it between the
- # pointwise portion and the reduction
- @register_decomposition(aten.mse_loss)
- @out_wrapper()
- @pw_cast_for_opmath
- def mse_loss(
- self: Tensor, target: Tensor, reduction: int = Reduction.MEAN.value
- ) -> Tensor:
- loss = (self - target) ** 2
- return apply_loss_reduction(loss, reduction)
- @register_decomposition(aten.mse_loss_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def mse_loss_backward(
- grad_output: Tensor, input: Tensor, target: Tensor, reduction: int
- ):
- norm = 2.0 / input.numel() if reduction == Reduction.MEAN.value else 2.0
- return norm * (input - target) * grad_output
- @register_decomposition(aten.smooth_l1_loss)
- @out_wrapper()
- @pw_cast_for_opmath
- def smooth_l1_loss(
- self: Tensor,
- target: Tensor,
- reduction: int = Reduction.MEAN.value,
- beta: float = 1.0,
- ):
- loss = (self - target).abs()
- loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta)
- return apply_loss_reduction(loss, reduction)
- @register_decomposition(aten.smooth_l1_loss_backward.default)
- @pw_cast_for_opmath
- def smooth_l1_loss_backward(
- grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, beta: float
- ):
- norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0
- x = self - target
- abs_x = torch.abs(x)
- norm_grad = norm * grad_output
- return torch.where(
- abs_x < beta,
- norm_grad * x / beta,
- norm_grad * torch.sign(x),
- )
- @register_decomposition(aten.smooth_l1_loss_backward.grad_input)
- @pw_cast_for_opmath
- def smooth_l1_loss_backward_out(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- reduction: int,
- beta: float,
- grad_input: Tensor,
- ):
- result = smooth_l1_loss_backward(grad_output, self, target, reduction, beta)
- _maybe_resize_out(grad_input, result.shape)
- return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True)
- @register_decomposition(aten.huber_loss_backward.default)
- @pw_cast_for_opmath
- def huber_loss_backward(
- grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, delta: float
- ):
- norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0
- x = self - target
- return torch.where(
- x < -delta,
- -norm * grad_output * delta,
- torch.where(x > delta, norm * grad_output * delta, norm * x * grad_output),
- )
- # We cannot use @out_wrapper() here, because the output tensor is not named 'out', it's 'grad_input'
- @register_decomposition(aten.huber_loss_backward.out)
- @pw_cast_for_opmath
- def huber_loss_backward_out(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- reduction: int,
- delta: float,
- grad_input: Tensor,
- ):
- result = huber_loss_backward(grad_output, self, target, reduction, delta)
- _maybe_resize_out(grad_input, result.shape)
- return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True)
- def _nll_loss_backward(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- total_weight: Tensor,
- ) -> Tensor:
- channel_dim = 0 if self.dim() < 2 else 1
- if reduction == Reduction.MEAN.value:
- grad_output = grad_output / total_weight
- target = target.unsqueeze(channel_dim)
- safe_target = torch.where(target != ignore_index, target, 0)
- grad_input = torch.zeros_like(self)
- grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0)
- if grad_input.dim() > grad_output.dim() > 0:
- grad_output = grad_output.unsqueeze(channel_dim)
- if weight is not None:
- new_shape = [1 for _ in range(self.dim())]
- new_shape[channel_dim] = weight.shape[0]
- weight = weight.reshape(new_shape)
- grad_output = grad_output * weight
- grad_output = torch.where(target != ignore_index, grad_output, 0)
- return grad_input * grad_output
- @register_decomposition(aten.glu_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def glu_backward(grad_output: Tensor, self: Tensor, dim: int) -> Tensor:
- assert self.dim() > 0, "glu does not support 0-dimensional tensors"
- wrap_dim = utils.canonicalize_dim(self.dim(), dim)
- nIn = self.size(wrap_dim)
- assert (
- nIn % 2 == 0
- ), f"Halving dimension must be even, but dimension {wrap_dim} is size {nIn}"
- inputSize = nIn // 2
- firstHalf = self.narrow(wrap_dim, 0, inputSize)
- secondHalf = self.narrow(wrap_dim, inputSize, inputSize)
- gradInputFirstHalf = torch.sigmoid(secondHalf)
- gradInputSecondHalf = (
- (1.0 - gradInputFirstHalf) * gradInputFirstHalf * firstHalf * grad_output
- )
- gradInputFirstHalf = gradInputFirstHalf * grad_output
- return torch.cat([gradInputFirstHalf, gradInputSecondHalf], dim=wrap_dim)
- @register_decomposition(aten.nll_loss_backward)
- @out_wrapper("grad_input")
- def nll_loss_backward(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- total_weight: Tensor,
- ) -> Tensor:
- assert 0 <= self.dim() <= 2, "input tensor should be 1D or 2D"
- assert (
- target.dim() <= 1
- ), "0D or 1D target tensor expected, multi-target not supported"
- no_batch_dim = self.dim() == 1 and target.dim() == 0
- assert no_batch_dim or (
- self.shape[0] == target.shape[0]
- ), f"size mismatch (got input: {self.shape}, target: {target.shape})"
- assert total_weight.numel() == 1, (
- "expected total_weight to be a single element tensor, got: ",
- f"{total_weight.shape} ({total_weight.numel()} elements)",
- )
- assert (
- weight is None or weight.numel() == self.shape[-1]
- ), "weight tensor should be defined either for all or no classes"
- if reduction == Reduction.NONE.value and self.dim() == 2:
- assert grad_output.dim() == 1 and grad_output.shape[0] == self.shape[0], (
- f"Expected a tensor of dimension 1 and tensor.size[0] == {self.shape[0]} but "
- f"got: dimension {grad_output.dim()} and tensor.size[0] == {grad_output.shape[0]}"
- )
- else:
- assert (
- grad_output.dim() <= 1 and grad_output.numel() == 1
- ), f"Expected a single element grad_output tensor, but got: {grad_output.shape}"
- return _nll_loss_backward(
- grad_output, self, target, weight, reduction, ignore_index, total_weight
- )
- @register_decomposition(aten.nll_loss2d_backward)
- @out_wrapper("grad_input")
- def nll_loss2d_backward(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- total_weight: Tensor,
- ) -> Tensor:
- assert (
- self.dim() == 4
- ), f"only batches of spatial inputs supported (4D tensors), but got input of dimension: {self.dim()}"
- assert (
- target.dim() == 3
- ), f"only batches of spatial targets supported (3D tensors) but got targets of dimension: {target.dim()}"
- assert (
- self.shape[0] == target.shape[0]
- and self.shape[2] == target.shape[1]
- and self.shape[3] == target.shape[2]
- ), f"size mismatch (got input: {self.shape}, target: {target.shape}"
- assert total_weight.numel() == 1, (
- "expected total_weight to be a single element tensor, "
- f"got: {total_weight.shape} ( {total_weight.numel()}, elements)"
- )
- return _nll_loss_backward(
- grad_output, self, target, weight, reduction, ignore_index, total_weight
- )
- @register_decomposition(aten.binary_cross_entropy)
- @out_wrapper()
- @pw_cast_for_opmath
- def binary_cross_entropy(
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor] = None,
- reduction: int = Reduction.MEAN.value,
- ) -> Tensor:
- # We cannot currently model this without introducing data-dependent control flow
- # TORCH_CHECK(
- # (input_val >= 0) && (input_val <= 1),
- # "all elements of input should be between 0 and 1"
- # )
- loss = (target - 1) * torch.maximum(
- torch.log1p(-self), self.new_full((), -100)
- ) - target * torch.maximum(torch.log(self), self.new_full((), -100))
- if weight is not None:
- loss = loss * weight
- return apply_loss_reduction(loss, reduction)
- @register_decomposition(aten.binary_cross_entropy_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def binary_cross_entropy_backward(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor] = None,
- reduction: int = Reduction.MEAN.value,
- ) -> Tensor:
- EPSILON = 1e-12
- result = grad_output * (self - target) / torch.clamp(self * (1 - self), min=EPSILON)
- if weight is not None:
- result = result * weight
- if reduction == Reduction.MEAN.value:
- result = result / self.numel()
- return result
- @register_decomposition(aten.soft_margin_loss)
- @out_wrapper()
- @pw_cast_for_opmath
- def soft_margin_loss(
- input: Tensor,
- target: Tensor,
- reduction: int = Reduction.MEAN.value,
- ) -> Tensor:
- loss = torch.log1p(torch.exp(-input * target))
- return apply_loss_reduction(loss, reduction)
- @register_decomposition(aten.soft_margin_loss_backward)
- @out_wrapper("grad_input")
- @pw_cast_for_opmath
- def soft_margin_loss_backward(
- grad_output: Tensor,
- self: Tensor,
- target: Tensor,
- reduction: int = Reduction.MEAN.value,
- ) -> Tensor:
- grad_input = target * grad_output * (torch.sigmoid(target * self) - 1)
- if reduction == Reduction.MEAN.value:
- grad_input = grad_input / self.numel()
- return grad_input
- @register_decomposition(aten.dist)
- @out_wrapper()
- def dist(input: Tensor, other: Tensor, p: float = 2):
- return aten.norm(input - other, p=p)
- @register_decomposition(aten._euclidean_dist)
- @out_wrapper()
- def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor:
- x1_norm = x1.pow(2).sum(-1, True)
- x1_pad = torch.ones_like(x1_norm, memory_format=torch.contiguous_format)
- x2_norm = x2.pow(2).sum(-1, True)
- x2_pad = torch.ones_like(x2_norm, memory_format=torch.contiguous_format)
- x1_ = torch.cat([x1.mul(-2), x1_norm, x1_pad], -1)
- x2_ = torch.cat([x2, x2_pad, x2_norm], -1)
- result = x1_.matmul(x2_.mT)
- return result.clamp_min(0).sqrt()
- @register_decomposition(aten.slice_backward)
- @out_wrapper()
- def slice_backward(
- grad_output: Tensor,
- input_sizes: List[int],
- dim: int,
- start: int,
- end: int,
- step: int,
- ):
- grad_input = grad_output.new_zeros(input_sizes)
- return torch.slice_scatter(grad_input, grad_output, dim, start, end, step)
- @register_decomposition(aten.slice.Tensor)
- def slice_forward(
- # Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1
- self: Tensor,
- dim: int = 0,
- start: Optional[int] = None,
- end: Optional[int] = None,
- step: int = 1,
- ):
- ndim = self.dim()
- if ndim == 0:
- raise RuntimeError("slice() cannot be applied to a 0-dim tensor.")
- dim = utils.canonicalize_dim(self.dim(), dim)
- sizes = list(self.size())
- strides = list(self.stride())
- if step <= 0:
- raise RuntimeError("slice step must be positive")
- start_val = start if start is not None else 0
- end_val = end if end is not None else sys.maxsize # 2^63 - 1
- if start_val < 0:
- start_val += sizes[dim]
- if end_val < 0:
- end_val += sizes[dim]
- if start_val < 0:
- start_val = 0
- elif start_val > sizes[dim]:
- start_val = sizes[dim]
- if end_val < start_val:
- end_val = start_val
- elif end_val > sizes[dim]:
- end_val = sizes[dim]
- storage_offset = self.storage_offset() + start_val * strides[dim]
- len = end_val - start_val
- sizes[dim] = (len + step - 1) // step
- strides[dim] *= step
- if self.is_quantized:
- raise NotImplementedError(
- "Slice decomposition for quantized tensors aren't implemented"
- )
- else:
- return self.as_strided(sizes, strides, storage_offset)
- @register_decomposition(aten.select_backward)
- @out_wrapper()
- def select_backward(grad_output: Tensor, input_sizes: List[int], dim: int, index: int):
- grad_input = grad_output.new_zeros(input_sizes)
- return torch.select_scatter(grad_input, grad_output, dim, index)
- @register_decomposition(aten.diagonal_backward)
- @out_wrapper()
- def diagonal_backward(
- grad_output: Tensor, input_sizes: List[int], offset: int, dim1: int, dim2: int
- ):
- grad_input = grad_output.new_zeros(input_sizes)
- return torch.diagonal_scatter(grad_input, grad_output, offset, dim1, dim2)
- def _cast_grad_to_input_dtype(
- grad_output: Tensor, grad_input: Tensor, input_dtype: torch.dtype
- ):
- if grad_output.dtype != input_dtype:
- grad_input = grad_input.to(input_dtype)
- return grad_input
- @register_decomposition(aten._softmax_backward_data)
- @out_wrapper("grad_input")
- @compute_only_pw_cast_for_opmath
- def _softmax_backward_data(
- grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype
- ):
- new_grad_output = grad_output * output
- grad_input = new_grad_output - output * torch.sum(
- new_grad_output, dim=dim, keepdim=True
- )
- # CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor
- # if grad_output.device == torch.device("cpu"):
- # return grad_input.contiguous()
- return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype).contiguous()
- @register_decomposition(aten._log_softmax_backward_data)
- @out_wrapper()
- @compute_only_pw_cast_for_opmath
- def _log_softmax_backward_data(
- grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype
- ):
- grad_input = grad_output - torch.exp(output) * torch.sum(
- grad_output, dim=dim, keepdim=True
- )
- return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype)
- def _im2col_col2im_indices_along_dim(
- input_d, kernel_d, dilation_d, padding_d, stride_d, device
- ):
- """Utility function to implement im2col and col2im"""
- blocks_d = input_d + padding_d * 2 - dilation_d * (kernel_d - 1)
- arange_kw = partial(torch.arange, dtype=torch.int64, device=device)
- # Stride kernel over input and find starting indices along dim d
- blocks_d_indices = arange_kw(0, blocks_d, stride_d).unsqueeze(0)
- # Apply dilation on kernel and find its indices along dim d
- kernel_grid = arange_kw(0, kernel_d * dilation_d, dilation_d).unsqueeze(-1)
- # Broadcast and add kernel starting positions (indices) with
- # kernel_grid along dim d, to get block indices along dim d
- return blocks_d_indices + kernel_grid
- @register_decomposition(aten.im2col)
- @out_wrapper()
- def im2col(
- input: Tensor,
- kernel_size: List[int],
- dilation: List[int],
- padding: List[int],
- stride: List[int],
- ) -> Tensor:
- torch._check(len(kernel_size) == 2, lambda: "im2col(): only 2D kernel supported")
- torch._check(len(dilation) == 2, lambda: "im2col(): only 2D dilation supported")
- torch._check(len(padding) == 2, lambda: "im2col(): only 2D padding supported")
- torch._check(len(stride) == 2, lambda: "im2col(): only 2D stride supported")
- def check_positive(param, param_name, strict=True):
- cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param)
- torch._check(
- cond, lambda: "{param_name} should be greater {'than' zero, but got {param}"
- )
- check_positive(kernel_size, "kernel_size")
- check_positive(dilation, "dilation")
- check_positive(dilation, "padding", strict=False)
- check_positive(stride, "stride")
- shape = input.shape
- ndim = len(shape)
- torch._check(
- ndim in (3, 4) and all(d != 0 for d in shape[-3:]),
- lambda: "Expected 3D or 4D (batch mode) tensor for input with possible 0 batch size "
- f"and non-zero dimensions, but got: {tuple(shape)}",
- )
- output_size = tuple(
- 1 + (out + 2 * pad - dil * (ker - 1) - 1) // st
- for out, pad, dil, ker, st in zip(
- shape[-2:], padding, dilation, kernel_size, stride
- )
- )
- torch._check(
- all(c > 0 for c in output_size),
- lambda: f"Given an input with spacial size {tuple(shape[-2:])}, "
- f"kernel_size={kernel_size}, dilation={dilation}, "
- f"padding={padding}, stride={stride}, "
- "the calculated shape of the array of sliding blocks "
- f"is {output_size}, but its components must be at least one.",
- )
- batched_input = ndim == 4
- if not batched_input:
- input = input.unsqueeze(0)
- batch_dim, channel_dim, input_h, input_w = input.shape
- stride_h, stride_w = stride
- padding_h, padding_w = padding
- dilation_h, dilation_w = dilation
- kernel_h, kernel_w = kernel_size
- blocks_row_indices = _im2col_col2im_indices_along_dim(
- input_h, kernel_h, dilation_h, padding_h, stride_h, input.device
- )
- blocks_col_indices = _im2col_col2im_indices_along_dim(
- input_w, kernel_w, dilation_w, padding_w, stride_w, input.device
- )
- # Note that F.pad takes (padding_left, padding_right, padding_top, padding_bottom)
- # ugh
- padded_input = F.pad(input, (padding_w, padding_w, padding_h, padding_h))
- blocks_row_indices = blocks_row_indices.unsqueeze(-1).unsqueeze(-1)
- output = padded_input[:, :, blocks_row_indices, blocks_col_indices]
- output = output.permute(0, 1, 2, 4, 3, 5)
- num_blocks_row = blocks_row_indices.size(1)
- num_blocks_col = blocks_col_indices.size(1)
- output = output.reshape(
- batch_dim, channel_dim * kernel_h * kernel_w, num_blocks_row * num_blocks_col
- )
- if not batched_input:
- output = output.squeeze(0)
- return output
- @register_decomposition(aten.col2im)
- @out_wrapper()
- @pw_cast_for_opmath
- def col2im(
- input: Tensor,
- output_size: List[int],
- kernel_size: List[int],
- dilation: List[int],
- padding: List[int],
- stride: List[int],
- ) -> Tensor:
- torch._check(len(output_size) == 2, lambda: "only 2D output_size supported")
- torch._check(len(kernel_size) == 2, lambda: "only 2D kernel supported")
- torch._check(len(dilation) == 2, lambda: "only 2D dilation supported")
- torch._check(len(padding) == 2, lambda: "only 2D padding supported")
- torch._check(len(stride) == 2, lambda: "only 2D stride supported")
- def check_positive(param, param_name, strict=True):
- cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param)
- torch._check(
- cond, lambda: "{param_name} should be greater than zero, but got {param}"
- )
- check_positive(kernel_size, "kernel_size")
- check_positive(dilation, "dilation")
- check_positive(padding, "padding", strict=False)
- check_positive(stride, "stride")
- check_positive(output_size, "output_size")
- shape = input.shape
- ndim = len(shape)
- torch._check(
- ndim in (2, 3) and all(d != 0 for d in shape[-2:]),
- lambda: "Expected 2D or 3D (batch mode) tensor for input with possible 0 batch size "
- f"and non-zero dimensions, but got: {tuple(shape)}",
- )
- prod_kernel_size = kernel_size[0] * kernel_size[1]
- torch._check(
- shape[-2] % prod_kernel_size == 0,
- lambda: "Expected size of input's first non-batch dimension to be divisible by the "
- f"product of kernel_size, but got input.shape[-2] = {shape[-2]} and "
- f"kernel_size={kernel_size}",
- )
- col = [
- 1 + (out + 2 * pad - dil * (ker - 1) - 1) // st
- for out, pad, dil, ker, st in zip(
- output_size, padding, dilation, kernel_size, stride
- )
- ]
- L = col[0] * col[1]
- torch._check(
- shape[-1] == L,
- lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, "
- f"dilation={dilation}, padding={padding}, stride={stride}, "
- f"expected input.size(-1) to be {L} but got {shape[-1]}.",
- )
- torch._check(
- L > 0,
- lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, "
- f"dilation={dilation}, padding={padding}, stride={stride}, "
- f"expected input.size(-1) to be {L} but got {shape[-1]}.",
- )
- batched_input = ndim == 3
- if not batched_input:
- input = input.unsqueeze(0)
- shape = input.shape
- out_h, out_w = output_size
- stride_h, stride_w = stride
- padding_h, padding_w = padding
- dilation_h, dilation_w = dilation
- kernel_h, kernel_w = kernel_size
- # col2im is defined as the backwards of im2col, so we differentiate its decomposition by hand
- input = input.reshape([shape[0], shape[1] // prod_kernel_size] + kernel_size + col)
- input = input.permute(0, 1, 2, 4, 3, 5)
- indices_row = _im2col_col2im_indices_along_dim(
- out_h, kernel_h, dilation_h, padding_h, stride_h, input.device
- )
- indices_row = _unsqueeze_to_dim(indices_row, 4)
- indices_col = _im2col_col2im_indices_along_dim(
- out_w, kernel_w, dilation_w, padding_w, stride_w, input.device
- )
- output_padded_size = [o + 2 * p for o, p in zip(output_size, padding)]
- output = input.new_zeros(
- [shape[0], shape[1] // prod(kernel_size)] + output_padded_size
- )
- idx = (None, None, indices_row, indices_col)
- output = aten._unsafe_index_put(output, idx, input, accumulate=True)
- output = F.pad(output, (-padding_w, -padding_w, -padding_h, -padding_h))
- if not batched_input:
- output = output.squeeze(0)
- return output
- @register_decomposition(aten.native_dropout_backward)
- @out_wrapper()
- def native_dropout_backward(grad_output: Tensor, mask: Tensor, scale: float):
- # According to the CUDA kernel implementation we should have this test;
- # but it seems to fail tests!
- # torch._check(mask.dtype == torch.bool, lambda: f"Mask should be Bool Scalar Type {mask.dtype}")
- # Mimicking CUDA kernel's behavior for output stride: output follow input's memory format
- # This different from TensorIterator's behavior
- r = (grad_output * (mask.type_as(grad_output) * scale)).clone(
- memory_format=utils.suggest_memory_format(grad_output)
- )
- return r
- @register_decomposition(aten.unfold_backward)
- @out_wrapper()
- def unfold_backward(
- grad: Tensor, input_size: List[int], dimension: int, size: int, step: int
- ) -> Tensor:
- if len(input_size) == 0:
- return torch.squeeze_copy(grad, 0)
- dim = utils.canonicalize_dim(len(input_size), dimension)
- idx = torch.arange(input_size[dim], device=grad.device, dtype=torch.int32)
- idx = idx.unfold(0, size, step).flatten()
- grad = grad.movedim(-1, dim + 1).flatten(dim, dim + 1)
- # nb. At the moment this generates two kernels in triton
- # It could potentially be fused into one call to scatter_reduce,
- # in the case step <= size provided scatter_reduce generates 1 kernel
- grad_input = grad.new_zeros(input_size)
- index = (None,) * dim + (idx,)
- return aten._unsafe_index_put(grad_input, index, grad, accumulate=True).contiguous()
- @register_decomposition(aten.logit_backward.default)
- @pw_cast_for_opmath
- def logit_backward(
- grad_output: Tensor, self: Tensor, eps: Optional[float] = None
- ) -> Tensor:
- if eps is not None:
- lo = eps
- hi = 1.0 - lo
- return torch.where(
- torch.logical_and(self >= lo, self <= hi),
- grad_output / (self * (1.0 - self)),
- 0.0,
- )
- else:
- return torch.where(
- torch.logical_and(self >= 0.0, self <= 1.0),
- grad_output / (self * (1.0 - self)),
- self.new_full((), float("nan")),
- )
- @register_decomposition(aten.dropout)
- @aten.dropout.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.dropout.default.py_impl(DispatchKey.Autograd)
- def dropout(input: Tensor, p: float, train: Optional[bool]):
- if train and p != 0:
- return aten.native_dropout(input, p, train)[0]
- else:
- return input.clone()
- @register_decomposition(aten.native_dropout)
- @out_wrapper("out0", "out1")
- def native_dropout(input: Tensor, p: float, train: Optional[bool]):
- if train and p != 0:
- if p == 1:
- return (torch.zeros_like(input), torch.zeros_like(input, dtype=torch.bool))
- if not input.dtype.is_floating_point:
- raise RuntimeError(
- "result type Float can't be cast to the desired output type Long"
- )
- bool_mask = torch.rand_like(input) > p
- res = bool_mask * input * float(1.0 / (1.0 - p))
- return (res, bool_mask)
- else:
- return (input, torch.ones_like(input, dtype=torch.bool))
- @register_decomposition(aten._softmax)
- @out_wrapper()
- def _softmax(x: Tensor, dim: int, half_to_float: bool):
- # eager softmax returns a contiguous tensor. Ensure that decomp also returns
- # a contiguous tensor.
- x = x.contiguous()
- if half_to_float:
- assert x.dtype == torch.half
- computation_dtype, result_dtype = utils.elementwise_dtypes(
- x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
- )
- x = x.to(computation_dtype)
- if x.numel() == 0:
- unnormalized = torch.exp(x)
- else:
- x_max = torch.amax(x, dim, keepdim=True)
- unnormalized = torch.exp(x - x_max)
- result = unnormalized / torch.sum(unnormalized, dim, keepdim=True)
- if not half_to_float:
- result = result.to(result_dtype)
- return result
- @register_decomposition(aten._log_softmax)
- @out_wrapper()
- def _log_softmax(x: Tensor, dim: int, half_to_float: bool):
- # eager log_softmax returns a contiguous tensor. Ensure that decomp also
- # returns a contiguous tensor.
- x = x.contiguous()
- if half_to_float:
- assert x.dtype == torch.half
- computation_dtype, result_dtype = utils.elementwise_dtypes(
- x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
- )
- x = x.to(computation_dtype)
- if x.numel() == 0:
- shifted = x
- else:
- x_max = torch.amax(x, dim, keepdim=True)
- shifted = x - x_max
- shifted_logsumexp = torch.log(torch.sum(torch.exp(shifted), dim, keepdim=True))
- result = shifted - shifted_logsumexp
- if not half_to_float:
- result = result.to(result_dtype)
- return result
- @register_decomposition(aten.embedding)
- @out_wrapper()
- def embedding(
- weight: Tensor,
- indices: Tensor,
- padding_idx: int = -1,
- scale_grad_by_freq: bool = False,
- sparse: bool = False,
- ) -> Tensor:
- assert weight.dim() == 2, "'weight' must be 2-D"
- # Nb. scale_grad_by_freq is not used in the forward
- if indices.ndim <= 1:
- # We need this one as weight[indices] calls item() in these cases
- out = weight.index_select(0, indices)
- if indices.ndim == 0:
- out = out.squeeze(0)
- return out
- else:
- return weight[indices]
- @register_decomposition(aten.embedding_dense_backward)
- @out_wrapper()
- def embedding_dense_backward(
- grad_output: Tensor,
- indices: Tensor,
- num_weights: int,
- padding_idx: int,
- scale_grad_by_freq: bool,
- ):
- computation_dtype, result_dtype = utils.elementwise_dtypes(
- grad_output, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
- )
- grad_output = grad_output.to(computation_dtype)
- indices = _maybe_convert_to_dtype(indices, torch.long) # type: ignore[assignment]
- if scale_grad_by_freq:
- counts = indices.new_zeros((num_weights,))
- ones = torch.ones_like(indices)
- counts = aten._unsafe_index_put(counts, [indices], ones, accumulate=True)
- grad_weights_scale = counts[indices]
- grad_output = grad_output / grad_weights_scale.unsqueeze(-1)
- mask = _unsqueeze_to_dim(indices == padding_idx, grad_output.ndim)
- grad = grad_output.masked_fill(mask, 0)
- grad_weight = grad_output.new_zeros(
- (num_weights,) + grad_output.shape[indices.ndim :]
- )
- return aten._unsafe_index_put(grad_weight, [indices], grad, accumulate=True).to(
- result_dtype
- )
- def prod(x: List[int]):
- r = 1
- for i in x:
- r *= i
- return r
- def _pad_chunk(
- tensors: List[Tensor],
- dim: int,
- num_chunks: int,
- ) -> List[Tensor]:
- padded_tensors = []
- for tensor in tensors:
- tensor_size = tensor.size()
- pad_along_dim = (tensor_size[dim] + num_chunks - 1) // num_chunks * num_chunks
- if pad_along_dim != tensor_size[dim]:
- # Use aten.constant_pad_nd instead of copy_ for functionalization
- pad = [0] * 2 * (tensor.ndim - dim - 1) + [
- 0,
- pad_along_dim - tensor_size[dim],
- ]
- tensor = aten.constant_pad_nd(tensor, pad, 0)
- view_size = tensor_size[:dim] + torch.Size([num_chunks, -1])
- padded_tensors.append(tensor.view(view_size))
- return padded_tensors
- def have_same_ndims(tensors: List[Tensor]):
- ndim = tensors[0].ndim
- for tensor in tensors:
- if tensor.ndim != ndim:
- return False
- return True
- def leading_dimension_matches(tensors: List[Tensor], dim: int):
- leading_dim_sizes = tensors[0].size()[:dim]
- for tensor in tensors:
- torch._check(
- tensor.size()[:dim] == leading_dim_sizes,
- lambda: "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors",
- )
- def _preprocess_chunk_cat_inputs(
- tensors: List[Tensor],
- dim: int,
- num_chunks: int,
- ):
- torch._check(num_chunks >= 1, lambda: "_chunk_cat expects positive num_chunks")
- torch._check(
- len(tensors) > 0, lambda: "_chunk_cat expects a non-empty input tensor list"
- )
- expected_dtype = tensors[0].dtype
- expected_device = tensors[0].device
- for tensor in tensors:
- torch._check(tensor.numel() > 0, lambda: "_chunk_cat expects non-empty tensor")
- torch._check(
- tensor.dtype == expected_dtype,
- lambda: "_chunk_cat expects all input tensors with the same dtype",
- )
- torch._check(
- tensor.device == expected_device,
- lambda: "_chunk_cat expects all inputs tensors on the same device",
- )
- if have_same_ndims(tensors):
- dim = utils.canonicalize_dim(tensors[0].dim(), dim)
- else:
- torch._check(
- dim >= 0,
- lambda: "_chunk_cat expects non-negative dim when input tensors have different ndims",
- )
- for tensor in tensors:
- torch._check(
- dim < tensor.ndim,
- lambda: "_chunk_cat expects dim < ndim for all input tensors",
- )
- leading_dimension_matches(tensors, dim)
- return dim
- @register_decomposition([aten._chunk_cat.default, aten._chunk_cat.out])
- def _chunk_cat(
- tensors: List[Tensor],
- dim: int,
- num_chunks: int,
- out: Optional[Tensor] = None,
- ) -> Tensor:
- dim = _preprocess_chunk_cat_inputs(tensors, dim, num_chunks)
- padded_tensors = _pad_chunk(tensors, dim, num_chunks)
- if out is None:
- return torch.cat(padded_tensors, dim + 1)
- else:
- torch.cat(padded_tensors, dim + 1, out=out)
- return out
- @register_decomposition(aten.split_with_sizes)
- def split_with_sizes(
- self: Tensor, split_sizes: List[int], dim: int = 0
- ) -> List[Tensor]:
- # NB: Perform the check_is_size tests first so that the
- # sum test does not try to do a replacement
- for i in range(len(split_sizes)):
- torch._check_is_size(
- split_sizes[i],
- lambda: "split_with_sizes expects split_sizes have only non-negative entries",
- )
- torch._check_with(
- ValueError,
- sum(split_sizes) == self.shape[dim],
- lambda: f"Split sizes add up to {sum(split_sizes)} but got the tensor's size of {self.shape[dim]}",
- )
- num_splits = len(split_sizes)
- splits = []
- start_idx = 0
- # Avoid importing sympy at a module level
- from torch.fx.experimental.symbolic_shapes import expect_true
- for i in range(num_splits):
- length = split_sizes[i]
- # We know this is true thanks to the sum, but this assertion helps
- # out our internal reasoning
- expect_true(start_idx + length <= self.shape[dim])
- splits.append(self.narrow(dim, start_idx, length))
- start_idx += length
- return splits
- # out_wrapper currently does not allow optional outputs
- @register_decomposition(
- [aten.split_with_sizes_copy.default, aten.split_with_sizes_copy.out]
- )
- def split_with_sizes_copy(
- self: Tensor,
- split_sizes: List[int],
- dim: int = 0,
- out: Optional[List[Tensor]] = None,
- ) -> Optional[List[Tensor]]:
- splits = split_with_sizes(self, split_sizes, dim=dim)
- if out is None:
- return [s.clone(memory_format=torch.contiguous_format) for s in splits]
- else:
- for output, split in zip(out, splits):
- _maybe_resize_out(output, split.shape)
- _safe_copy_out(copy_from=split, copy_to=output, exact_dtype=True)
- return None
- @register_decomposition(aten.unsafe_split.Tensor)
- def unsafe_split(input: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]:
- return aten.split.Tensor(input, split_size, dim)
- @register_decomposition(aten.unsafe_split_with_sizes.default)
- def unsafe_split_with_sizes(
- input: Tensor, split_sizes: List[int], dim: int = 0
- ) -> Tuple[Tensor, ...]:
- return aten.split_with_sizes.default(input, split_sizes, dim)
- @register_decomposition(aten.split.Tensor)
- def split(self: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]:
- input_sizes = self.shape
- dim_size = input_sizes[dim]
- if split_size == 0:
- assert dim_size == 0
- return (self,)
- chunks = (dim_size + split_size - 1) // split_size
- # Avoid importing sympy at a module level
- from torch.fx.experimental.symbolic_shapes import guard_int
- chunks = guard_int(chunks)
- split_sizes = [split_size for i in range(chunks)]
- split_sizes[-1] = split_size - (split_size * chunks - dim_size)
- return torch.split(self, split_sizes, dim)
- @aten.tensor_split.tensor_indices_or_sections.py_impl(
- DispatchKey.CompositeImplicitAutograd
- )
- def tensor_split_tensor_indices_or_sections_py_impl(
- self: Tensor,
- tensor_indices_or_sections: Tensor,
- dim: int = 0,
- ) -> Tuple[Tensor, ...]:
- assert tensor_indices_or_sections.device.type == "cpu"
- assert tensor_indices_or_sections.dtype == torch.int64
- split_dim = tensor_indices_or_sections.dim()
- torch._check(
- split_dim == 1 or split_dim == 0,
- lambda: "tensor_split expected tensor_indices_or_sections to be a zero-dimensional "
- f"or one-dimensional tensor, but got a tensor with {split_dim} dims",
- )
- if split_dim == 0:
- sections = tensor_indices_or_sections.item()
- assert isinstance(sections, IntLike)
- return self.tensor_split(sections, dim)
- else:
- indices = [i.item() for i in tensor_indices_or_sections]
- # WARNING: Tempted to torch._check_is_size on the indices here? You
- # can't: tensor_split works with negative values in indices:
- #
- # >>> torch.tensor_split(torch.randn(10), torch.tensor([-5, 5]))
- # (tensor([ 0.3540, 2.1074, -0.8507, 1.1639, 0.3055]), tensor([]),
- # tensor([-0.4285, 1.0692, -0.1776, 0.9362, 1.6143]))
- #
- # Sorry, I don't make the rules. Explicitly do the item call in user
- # code if you KNOW that they are non-negative.
- return self.tensor_split(indices, dim)
- # TODO: this doesn't appear to have enough precision in bfloat16
- @register_decomposition(aten.addmm)
- @out_wrapper()
- @pw_cast_for_opmath
- def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, beta: int = 1, alpha: int = 1):
- if not self.is_floating_point() and not self.is_complex():
- beta = int(beta)
- alpha = int(alpha)
- out = alpha * torch.mm(mat1, mat2)
- if beta == 0:
- return out
- # The output of aten.addmm is contiguous, we need to match this behavior in the decomposition.
- # The original implementation 'beta * self + out' would return a strided tensor if `self` is strided.
- # We thus use `out`, the output of torch.mm, which is always contiguous, as the first argument for addition.
- # This is relying on TensorIterator's behavior that it takes higher precedence on the stride of first input.
- # Alternative, we can write `(beta * self + out).contiguous()`, but it introduces another copy in some cases.
- # This implementation is not ideal, and we should revisit this when we have a better solution.
- return out + beta * self
- @register_decomposition(aten._addmm_activation)
- @out_wrapper()
- @pw_cast_for_opmath
- def _addmm_activation(
- self: Tensor,
- mat1: Tensor,
- mat2: Tensor,
- beta: int = 1,
- alpha: int = 1,
- use_gelu: bool = False,
- ):
- out = addmm(self, mat1, mat2, beta, alpha)
- if use_gelu:
- if self.is_cuda:
- return aten.gelu(out, approximate="tanh")
- else:
- return aten.gelu(out)
- return aten.relu(out)
- @register_decomposition(aten.addmv)
- @out_wrapper()
- @pw_cast_for_opmath
- def addmv(self: Tensor, mat1: Tensor, vec: Tensor, beta: int = 1, alpha: int = 1):
- if not self.is_floating_point() and not self.is_complex():
- beta = int(beta)
- alpha = int(alpha)
- out = alpha * torch.mv(mat1, vec)
- if beta == 0:
- return out
- return out + beta * self
- @register_decomposition(aten.native_group_norm_backward.default)
- @pw_cast_for_opmath
- def native_group_norm_backward(
- grad_output: Tensor,
- input: Tensor,
- mean: Tensor,
- rstd: Tensor,
- gamma: Optional[Tensor],
- N: int,
- C: int,
- HxW: int,
- group: int,
- output_mask: List[bool],
- ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
- utils.check_same_device(
- grad_output, input, mean, rstd, allow_cpu_scalar_tensors=False
- )
- utils.check_same_shape(input, grad_output, allow_cpu_scalar_tensors=False)
- utils.check_same_shape(mean, rstd, allow_cpu_scalar_tensors=False)
- torch._check(
- input.numel() == N * C * HxW,
- lambda: f"Expect input to have { N * C * HxW} elements",
- )
- torch._check(
- mean.shape == (N, group),
- lambda: f"Expect mean to have shape ({N}, {group}, but got {mean.shape}",
- )
- torch._check(
- gamma is None or gamma.numel() == C,
- lambda: f"Expect gamma to have {C} elements but got {gamma.numel() if gamma is not None else -1}",
- )
- cpg, _rem = divmod(C, group)
- torch._check(
- _rem == 0,
- lambda: f"Expect number of channels {C} to be evenly-divisible by number of groups {group}",
- )
- # Compute Internal gradients
- ds = torch.mul(grad_output, input).view(N, C, HxW).sum(dim=[2])
- db = grad_output.view(N, C, HxW).sum(dim=[2])
- d_input: Optional[Tensor] = None
- d_gamma: Optional[Tensor] = None
- d_bias: Optional[Tensor] = None
- if output_mask[0]:
- s = 1.0 / (HxW * cpg)
- if gamma is not None:
- ds_val = torch.mul(ds, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2)
- db_val = torch.mul(db, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2)
- c1 = torch.mul(
- rstd.unsqueeze(-1),
- gamma.reshape(1, group, cpg),
- )
- else:
- ds_val = ds.reshape(N, group, cpg).sum(2)
- db_val = db.reshape(N, group, cpg).sum(2)
- c1 = torch.mul(
- rstd.unsqueeze(-1),
- torch.ones((1, group, cpg), device=rstd.device),
- )
- c2 = (db_val * mean - ds_val) * rstd * rstd * rstd * s
- c3 = -c2 * mean - db_val * rstd * s
- c1 = c1.unsqueeze(-1)
- c2 = _unsqueeze_to_dim(c2, 4)
- c3 = _unsqueeze_to_dim(c3, 4)
- d_input = (
- torch.mul(grad_output.reshape(N, group, cpg, HxW), c1)
- + torch.mul(input.reshape(N, group, cpg, HxW), c2)
- + c3
- )
- d_input = d_input.reshape(input.shape).to(input.dtype)
- if output_mask[1]:
- d_gamma = (
- (
- (ds.view(N, group, cpg) - db.view(N, group, cpg) * mean.unsqueeze(-1))
- * rstd.unsqueeze(-1)
- )
- .sum(dim=[0])
- .reshape(C)
- )
- if output_mask[2]:
- d_bias = db.sum(dim=[0])
- return (d_input, d_gamma, d_bias)
- # out_wrapper currently does not allow optional outputs
- @register_decomposition(aten.native_group_norm_backward.out)
- def native_group_norm_backward_out(
- grad_output: Tensor,
- input: Tensor,
- mean: Tensor,
- rstd: Tensor,
- gamma: Optional[Tensor],
- N: int,
- C: int,
- HxW: int,
- group: int,
- output_mask: List[bool],
- *,
- out0: torch.Tensor,
- out1: torch.Tensor,
- out2: torch.Tensor,
- ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
- result = native_group_norm_backward(
- grad_output, input, mean, rstd, gamma, N, C, HxW, group, output_mask
- )
- grad_input = (out0, out1, out2)
- for i, r in enumerate(result):
- if r is not None:
- _maybe_resize_out(grad_input[i], r.shape)
- _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)
- return grad_input
- def _maybe_cast(x: Optional[Tensor], dtype) -> Optional[Tensor]:
- if x is not None:
- return x.to(dtype)
- return x
- # TODO: Take a closer look at the type promotion semantics
- @register_decomposition(aten.native_layer_norm_backward.default)
- def native_layer_norm_backward(
- grad_out: Tensor,
- input: Tensor,
- normalized_shape: List[int],
- mean: Tensor,
- rstd: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- output_mask: List[bool],
- ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
- input_shape = input.shape
- input_ndim = input.dim()
- computation_dtype = utils.get_computation_dtype(input.dtype)
- grad_out_cast, input_cast, weight_cast, bias_cast = (
- x.to(computation_dtype).contiguous() if x is not None else x
- for x in (grad_out, input, weight, bias)
- )
- assert grad_out_cast is not None
- axis = input_ndim - len(normalized_shape)
- inner_dims = input_shape[axis:]
- outer_dims = input_shape[:axis]
- inner_dim_indices: List[int] = []
- outer_dim_indices: List[int] = []
- for i in range(input_ndim):
- if i >= axis:
- inner_dim_indices.append(i)
- else:
- outer_dim_indices.append(i)
- N = prod(inner_dims) # type: ignore[arg-type]
- M = prod(outer_dims) # type: ignore[arg-type]
- if M <= 0 or N <= 0:
- return (
- input.new_zeros(input_shape) if output_mask[0] else None,
- input.new_zeros(input_shape[axis:]) if output_mask[1] else None,
- input.new_zeros(input_shape[axis:]) if output_mask[2] else None,
- )
- mean = _unsqueeze_to_dim(mean, input_cast.dim()) # type: ignore[union-attr]
- rstd = _unsqueeze_to_dim(rstd, input_cast.dim()) # type: ignore[union-attr]
- x_hat = (input_cast - mean) * rstd
- if weight_cast is not None:
- grad_x_hat = grad_out_cast * weight_cast
- else:
- grad_x_hat = grad_out_cast
- a = grad_x_hat * N
- b = torch.sum(grad_x_hat, inner_dim_indices, True)
- c1 = torch.mul(grad_x_hat, x_hat)
- c2 = torch.sum(c1, inner_dim_indices, True)
- c3 = torch.mul(x_hat, c2)
- inner = a - b - c3
- d_input: Optional[Tensor] = None
- d_weight: Optional[Tensor] = None
- d_bias: Optional[Tensor] = None
- if output_mask[0]:
- d_input = (rstd / N) * inner
- if output_mask[1] and weight_cast is not None:
- if len(outer_dim_indices) > 0:
- d_weight = torch.sum(grad_out_cast * x_hat, outer_dim_indices, False)
- else:
- d_weight = grad_out_cast * x_hat
- if output_mask[2] and bias_cast is not None:
- if len(outer_dim_indices) > 0:
- d_bias = torch.sum(grad_out_cast, outer_dim_indices, False)
- else:
- d_bias = grad_out_cast.clone()
- return (
- _maybe_cast(d_input, input.dtype),
- _maybe_cast(d_weight, input.dtype),
- _maybe_cast(d_bias, input.dtype),
- )
- # out_wrapper currently does not allow optional outputs
- @register_decomposition(aten.native_layer_norm_backward.out)
- def native_layer_norm_backward_out(
- grad_out: Tensor,
- input: Tensor,
- normalized_shape: List[int],
- mean: Tensor,
- rstd: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- output_mask: List[bool],
- *,
- out0: torch.Tensor,
- out1: torch.Tensor,
- out2: torch.Tensor,
- ) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
- result = native_layer_norm_backward(
- grad_out, input, normalized_shape, mean, rstd, weight, bias, output_mask
- )
- grad_input = (out0, out1, out2)
- for i, r in enumerate(result):
- if r is not None:
- _maybe_resize_out(grad_input[i], r.shape)
- _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)
- return grad_input
- def native_batch_norm_helper(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- training: bool,
- momentum: float,
- eps: float,
- functional: bool,
- ) -> Tuple[Tensor, Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
- reduction_dims = [0] + list(range(2, input.dim()))
- computation_dtype = utils.get_computation_dtype(input.dtype)
- new_running_mean = running_mean
- new_running_var = running_var
- if training:
- computation_dtype = utils.get_computation_dtype(input.dtype)
- input_acc = input.to(dtype=computation_dtype)
- biased_var, mean = torch.var_mean(
- input_acc, dim=reduction_dims, correction=0, keepdim=True
- )
- rstd = torch.rsqrt(biased_var + eps)
- output = (input - mean) * rstd
- save_mean = torch.squeeze(mean, reduction_dims)
- save_rstd = torch.squeeze(rstd, reduction_dims)
- if running_mean is not None:
- new_running_mean = momentum * save_mean + (1 - momentum) * running_mean
- if not functional:
- running_mean.copy_(new_running_mean)
- if running_var is not None:
- n = input.numel() / input.shape[1]
- # This doesn't strictly match eager's numerics, which accumulates var sum and then directly applies the correction
- # But... that would require re-implementing var here, for negligible numerics gain on a tensor whose
- # numerics probably don't matter.
- squeezed_var = torch.squeeze(biased_var, reduction_dims)
- unbiased_var = squeezed_var * (n / (n - 1))
- new_running_var = momentum * unbiased_var + (1 - momentum) * running_var
- if not functional:
- running_var.copy_(new_running_var)
- else:
- assert running_mean is not None and running_var is not None
- running_mean = running_mean.to(dtype=computation_dtype, copy=True)
- new_running_mean = running_mean
- running_var = running_var.to(dtype=computation_dtype, copy=True)
- new_running_var = running_var
- mean = running_mean
- invstd = 1 / (torch.sqrt(running_var + eps))
- # Very annoying inconsistency where CPU and CUDA give different shapes
- if input.device.type != "cpu":
- save_mean = running_mean
- save_rstd = invstd
- else:
- save_mean = input.new_zeros((0,))
- save_rstd = input.new_zeros((0,))
- mean = _unsqueeze_to_dim(mean, input.dim() - 1)
- invstd = _unsqueeze_to_dim(invstd, input.dim() - 1)
- output = (input - mean) * invstd
- if weight is not None:
- weight = weight.flatten()
- weight = _unsqueeze_to_dim(weight, input.dim() - 1)
- output = output * weight
- if bias is not None:
- bias = bias.flatten()
- bias = _unsqueeze_to_dim(bias, input.dim() - 1)
- output = output + bias
- if input.device.type == "cpu":
- save_mean = save_mean.to(dtype=input.dtype)
- save_rstd = save_rstd.to(dtype=input.dtype)
- return (
- output.to(dtype=input.dtype),
- save_mean,
- save_rstd,
- new_running_mean,
- new_running_var,
- )
- @register_decomposition(aten.native_batch_norm)
- @out_wrapper("out", "save_mean", "save_invstd")
- def native_batch_norm(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- training: bool,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor]:
- output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
- input, weight, bias, running_mean, running_var, training, momentum, eps, False
- )
- return output, save_mean, save_rstd
- # TODO: this decomposition is NOT here to stay. We would much prefer replacing native_batch_norm
- # with our new correctly schema'd _native_batch_norm_legit and its variants, but
- # we cannot do that immediately in the C++ because it would be forwards incompatible
- # with some mobile use cases.
- #
- # Since this change is most impactful for aot autograd/functionalization, we simply
- # register this decomposition on the Autograd key for the python dispatcher (which is
- # currently only used by aot autograd/functionalization and no one else, really).
- # In two weeks or so, we should remove this decomposition and phase out the current native_batch_norm
- # to be _native_batch_norm_legit and have the right schema (stating that there are input mutations).
- @aten.native_batch_norm.default.py_impl(DispatchKey.Autograd)
- @aten.native_batch_norm.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- def native_batch_norm_decomposition(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- training: bool,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor]:
- if running_mean is None and running_var is None:
- return aten._native_batch_norm_legit(
- input, weight, bias, training, momentum, eps
- )
- if running_mean is None:
- raise RuntimeError(
- "running_mean is None, but running_var is provided. "
- "They should both be None or both be provided."
- )
- if running_var is None:
- raise RuntimeError(
- "running_var is None, but running_mean is provided. "
- "They should both be None or both be provided."
- )
- if training:
- # HACK: batch norm consolidation should clean this up so this op doesn't take in a training arg.
- return aten._native_batch_norm_legit(
- input, weight, bias, running_mean, running_var, training, momentum, eps
- )
- else:
- return aten._native_batch_norm_legit_no_training(
- input, weight, bias, running_mean, running_var, momentum, eps
- )
- @aten.unsafe_chunk.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- def unsafe_chunk_py_impl(tensor, chunks, dim=0) -> List[Tensor]:
- dim_size = tensor.size(dim)
- split_size = (dim_size + chunks - 1) // chunks
- if split_size == 0 and dim_size == 0:
- split_sizes = [split_size for _ in chunks]
- split_sizes[chunks - 1] = split_size - (split_size * chunks - dim_size)
- return torch.ops.aten.unsafe_split_with_sizes.default(tensor, split_sizes, dim)
- return torch.ops.aten.unsafe_split.Tensor(tensor, split_size, dim)
- @register_decomposition(aten._native_batch_norm_legit_no_training.default)
- def _native_batch_norm_legit_no_training(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor]:
- return aten._native_batch_norm_legit.default(
- input,
- weight,
- bias,
- running_mean,
- running_var,
- False, # training
- momentum,
- eps,
- )
- @register_decomposition(aten._native_batch_norm_legit.default)
- def _native_batch_norm_legit(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- training: bool,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor]:
- output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
- input, weight, bias, running_mean, running_var, training, momentum, eps, False
- )
- return output, save_mean, save_rstd
- @register_decomposition(aten._native_batch_norm_legit.no_stats)
- def _native_batch_norm_legit_no_stats(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- training: bool,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor]:
- output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
- input, weight, bias, None, None, training, momentum, eps, False
- )
- return output, save_mean, save_rstd
- @register_decomposition(aten._native_batch_norm_legit_functional.default)
- def _native_batch_norm_legit_functional(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- training: bool,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
- (
- output,
- save_mean,
- save_rstd,
- new_running_mean,
- new_running_var,
- ) = native_batch_norm_helper(
- input, weight, bias, running_mean, running_var, training, momentum, eps, True
- )
- assert new_running_mean is not None, "new_running_mean should not be None"
- assert new_running_var is not None, "new_running_var should not be None"
- return output, save_mean, save_rstd, new_running_mean, new_running_var
- def _get_batch_norm_reserve_tensor(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- eps: float,
- training: bool,
- ) -> Tensor:
- """
- Return a reserve tensor for batch norm, used only by cudnn to pass forward state to the
- backward pass. This is needed for `_batch_norm_with_update` and `_batch_norm_no_update`,
- which support a variety of backends including cudnn. We create this tensor here to get
- the correct shape in the traced graph if we detect that will call the cudnn kernel,
- and rely on DCE to avoid materializing this tensor.
- """
- backend = torch._C._select_batch_norm_backend( # type: ignore[attr-defined]
- input, weight, bias, running_mean, running_var, True, eps
- )
- reserve_size = 0
- if backend == torch._C._BatchNormBackend.Cudnn: # type: ignore[attr-defined]
- reserve_size = torch._C._get_cudnn_batch_norm_reserve_space_size(input, training) # type: ignore[attr-defined]
- return torch.empty(
- reserve_size, dtype=torch.uint8, layout=input.layout, device=input.device
- )
- @register_decomposition(aten._batch_norm_with_update.default)
- def _batch_norm_with_update(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
- output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
- input,
- weight,
- bias,
- running_mean,
- running_var,
- True, # training
- momentum,
- eps,
- False, # functional
- )
- reserve = _get_batch_norm_reserve_tensor(
- input, weight, bias, running_mean, running_var, eps, training=True
- )
- return output, save_mean, save_rstd, reserve
- @register_decomposition(aten._batch_norm_with_update_functional.default)
- def _batch_norm_with_update_functional(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
- (
- output,
- save_mean,
- save_rstd,
- new_rm,
- new_rv,
- ) = native_batch_norm_helper(
- input, weight, bias, running_mean, running_var, True, momentum, eps, True
- )
- reserve = _get_batch_norm_reserve_tensor(
- input, weight, bias, running_mean, running_var, eps, training=True
- )
- assert new_rm is not None, "new_running_mean should not be None"
- assert new_rv is not None, "new_running_var should not be None"
- return (output, save_mean, save_rstd, reserve, new_rm, new_rv)
- @register_decomposition(aten._batch_norm_no_update.default)
- def _batch_norm_no_update(
- input: Tensor,
- weight: Optional[Tensor],
- bias: Optional[Tensor],
- running_mean: Tensor,
- running_var: Tensor,
- momentum: float,
- eps: float,
- ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
- output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
- input,
- weight,
- bias,
- running_mean,
- running_var,
- False, # training
- momentum,
- eps,
- False, # functional
- )
- reserve = _get_batch_norm_reserve_tensor(
- input, weight, bias, running_mean, running_var, eps, training=False
- )
- return output, save_mean, save_rstd, reserve
- @register_decomposition(aten._fused_dropout)
- @out_wrapper("out0", "out1")
- @pw_cast_for_opmath
- def _fused_dropout_decomposition(input, p, generator=None):
- assert generator is None
- mask = (torch.rand_like(input) < p).to(dtype=torch.uint8)
- res = mask.type_as(input) * input * (1.0 / p)
- return (res, mask)
- @register_decomposition(aten._to_copy)
- @out_wrapper()
- def _to_copy(
- x: Tensor,
- *,
- dtype: Optional[torch.dtype] = None,
- layout=None,
- device: Optional[torch.device] = None,
- pin_memory: bool = False,
- non_blocking: bool = False,
- memory_format: Optional[torch.memory_format] = None,
- ):
- assert not layout or layout == torch.strided, "TODO"
- assert not pin_memory, "TODO"
- if device is None and dtype is None and memory_format is None:
- return x.clone()
- dtype_converted = False
- if device is not None and device != x.device:
- # avoid conversions on cpu
- if dtype is not None and device.type == "cpu":
- x = torch._prims.convert_element_type(x, dtype)
- dtype_converted = True
- x = torch._prims.device_put(x, device)
- if dtype is not None and not dtype_converted:
- x = torch._prims.convert_element_type(x, dtype)
- dtype_converted = True
- if memory_format is not None: # no ref/prim for memory format
- return torch.clone(x, memory_format=memory_format)
- return x
- # Questionable decompositions
- # This is only valid if we're running the graph without autograd, such as if the backward pass has been traced.
- # Note that this decomposition causes issues with in-place ops
- @register_decomposition([aten.detach, aten.lift, aten.lift_fresh])
- @out_wrapper()
- def nop_decomposition(x):
- return aten.alias(x)
- # Also register to the Autograd dispatch key, so this decomp can run above autograd.
- # native_batch_norm needs to decompose into other ops before autograd.
- @aten.cudnn_batch_norm.default.py_impl(DispatchKey.Autograd)
- @register_decomposition(aten.cudnn_batch_norm)
- @out_wrapper("out0", "out1", "out2", "out3")
- def cudnn_batch_norm(
- input: Tensor,
- weight: Tensor,
- bias: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- training: bool,
- exponential_average_factor: float,
- epsilon: float,
- ):
- a, b, c = aten.native_batch_norm(
- input,
- weight,
- bias,
- running_mean,
- running_var,
- training,
- exponential_average_factor,
- epsilon,
- )
- # Cudnn return running mean and variance when training is True
- if training:
- return (a, b, c, input.new_zeros((0,), dtype=torch.uint8))
- return (
- a,
- weight.new_zeros((0,)),
- weight.new_zeros((0,)),
- input.new_zeros((0,), dtype=torch.uint8),
- )
- def _broadcast_batch_norm_backward(x, broadcast_mask):
- for axis, mask in enumerate(broadcast_mask):
- if mask == 1 and not (axis < x.ndim and x.shape[axis] == mask):
- x = x.unsqueeze(axis)
- return x
- @register_decomposition(aten.batch_norm_backward.default)
- def batch_norm_backward(
- grad_out: Tensor,
- input: Tensor,
- weight: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- save_mean: Optional[Tensor],
- save_invstd: Optional[Tensor],
- train: bool,
- eps: float,
- output_mask: List[bool],
- reserve: Tensor,
- ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
- return native_batch_norm_backward(
- grad_out,
- input,
- weight,
- running_mean,
- running_var,
- save_mean,
- save_invstd,
- train,
- eps,
- output_mask,
- )
- @register_decomposition(aten.native_batch_norm_backward.default)
- def native_batch_norm_backward(
- grad_out: Tensor,
- input: Tensor,
- weight: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- save_mean: Optional[Tensor],
- save_invstd: Optional[Tensor],
- train: bool,
- eps: float,
- output_mask: List[bool],
- ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
- input_dtype = input.dtype
- if weight is not None:
- weight_dtype = weight.dtype
- else:
- weight_dtype = input_dtype
- computation_dtype = utils.get_computation_dtype(input.dtype)
- (
- grad_out_cast,
- input_cast,
- weight_cast,
- running_mean_cast,
- running_var_cast,
- save_mean_cast,
- save_invstd_cast,
- ) = (
- x.to(computation_dtype) if x is not None else x
- for x in (
- grad_out,
- input,
- weight,
- running_mean,
- running_var,
- save_mean,
- save_invstd,
- )
- )
- input_shape = input.shape
- input_rank = input.dim()
- assert input_rank >= 2, "rank of the input must be at least 2"
- axis = 1
- num_features = prod(list(input_shape)) / input_shape[axis]
- mean = save_mean_cast
- invstd = save_invstd_cast
- if train:
- assert save_mean_cast is not None and save_invstd_cast is not None
- else:
- assert running_mean_cast is not None and running_var_cast is not None
- mean = running_mean_cast
- invstd = torch.rsqrt(running_var_cast + eps)
- broadcast_mask: List[int] = [1] * input_rank
- broadcast_mask[axis] = input_shape[axis]
- reduction_axes: List[int] = []
- for i in range(input_rank):
- if i != axis:
- reduction_axes.append(i)
- mean = _broadcast_batch_norm_backward(mean, broadcast_mask) # type: ignore[arg-type]
- norm = 1.0 / num_features
- grad_output_sum = torch.sum(grad_out_cast, reduction_axes) # type: ignore[arg-type]
- dot_p = torch.sum(grad_out_cast * (input_cast - mean), reduction_axes) # type: ignore[operator]
- grad_mean = _broadcast_batch_norm_backward(grad_output_sum * norm, broadcast_mask)
- proj_scale = _broadcast_batch_norm_backward(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask) # type: ignore[operator]
- if weight_cast is None:
- grad_scale = _broadcast_batch_norm_backward(invstd, broadcast_mask) * 1.0 # type: ignore[arg-type]
- else:
- grad_scale = _broadcast_batch_norm_backward(
- invstd * weight_cast, broadcast_mask
- )
- if train:
- proj = (input_cast - mean) * proj_scale # type: ignore[operator]
- grad_input = ((grad_out_cast - proj) - grad_mean) * grad_scale
- else:
- grad_input = grad_out_cast * grad_scale
- if output_mask[1]:
- grad_weight = dot_p * invstd
- else:
- grad_weight = None # "None" doesn't work with vjp, should use zeros for vjp
- if output_mask[2]:
- grad_bias = grad_output_sum
- else:
- grad_bias = None # "None" doesn't work with vjp, should use zeros for vjp
- return (
- grad_input.to(input_dtype),
- _maybe_cast(grad_weight, weight_dtype),
- _maybe_cast(grad_bias, weight_dtype),
- )
- # out_wrapper currently does not allow optional outputs
- @register_decomposition(aten.native_batch_norm_backward.out)
- def native_batch_norm_backward_out(
- grad_out: Tensor,
- input: Tensor,
- weight: Optional[Tensor],
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- save_mean: Optional[Tensor],
- save_invstd: Optional[Tensor],
- train: bool,
- eps: float,
- output_mask: List[bool],
- *,
- out0: torch.Tensor,
- out1: torch.Tensor,
- out2: torch.Tensor,
- ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
- result = native_batch_norm_backward(
- grad_out,
- input,
- weight,
- running_mean,
- running_var,
- save_mean,
- save_invstd,
- train,
- eps,
- output_mask,
- )
- grad_input = (out0, out1, out2)
- for i, r in enumerate(result):
- if r is not None:
- _maybe_resize_out(grad_input[i], r.shape)
- _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)
- return grad_input
- @register_decomposition(aten.miopen_batch_norm_backward)
- @out_wrapper("out0", "out1", "out2")
- def miopen_batch_norm_backward(
- input: Tensor,
- grad_output: Tensor,
- weight: Tensor,
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- save_mean: Optional[Tensor],
- save_var: Optional[Tensor],
- epsilon: float,
- ):
- return aten.native_batch_norm_backward(
- grad_output,
- input,
- weight,
- running_mean,
- running_var,
- save_mean,
- save_var,
- True,
- epsilon,
- [True, True, True],
- )
- @register_decomposition(aten.cudnn_batch_norm_backward)
- @out_wrapper("out0", "out1", "out2")
- def cudnn_batch_norm_backward(
- input: Tensor,
- grad_output: Tensor,
- weight: Tensor,
- running_mean: Optional[Tensor],
- running_var: Optional[Tensor],
- save_mean: Optional[Tensor],
- save_var: Optional[Tensor],
- epsilon: float,
- reserveSpace: Tensor,
- ):
- return aten.native_batch_norm_backward(
- grad_output,
- input,
- weight,
- running_mean,
- running_var,
- save_mean,
- save_var,
- True,
- epsilon,
- [True, True, True],
- )
- @register_decomposition(aten._adaptive_avg_pool2d)
- @out_wrapper()
- @pw_cast_for_opmath
- def adaptive_avg_pool2d(input: Tensor, output_size: Tuple[int, int]):
- # Preconditions
- device = input.device
- shape = input.shape
- ndim = len(shape)
- torch._check(
- ndim in (3, 4),
- lambda: f"adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got {ndim}",
- )
- for d in input.shape[-2:]:
- torch._check(
- d != 0,
- lambda: "adaptive_avg_pool2d(): Expected input to have non-zero size for "
- f"non-batch dimensions, but input has shape {tuple(shape)}.",
- )
- # Optimisation (we should also do this in the kernel implementation)
- if shape[-2] % output_size[-2] == 0 and shape[-1] % output_size[-1] == 0:
- stride = tuple(i // o for i, o in zip(shape[-2:], output_size))
- kernel = tuple(
- i - (o - 1) * s for i, o, s in zip(shape[-2:], output_size, stride)
- )
- return torch.nn.functional.avg_pool2d(input, kernel, stride)
- def start_index(a, b, c):
- return torch.div(a * c, b, rounding_mode="trunc")
- def end_index(a, b, c):
- return torch.div((a + 1) * c + b - 1, b, rounding_mode="trunc")
- def compute_idx(in_size, out_size):
- orange = torch.arange(out_size, device=device, dtype=torch.int64)
- i0 = start_index(orange, out_size, in_size)
- # Let length = end_index - start_index, i.e. the length of the pooling kernels
- # length.max() can be computed analytically as follows:
- maxlength = in_size // out_size + 1
- in_size_mod = in_size % out_size
- # adaptive = True iff there are kernels with different lengths
- adaptive = not (in_size_mod == 0 or out_size % in_size_mod == 0)
- if adaptive:
- maxlength += 1
- elif in_size_mod == 0:
- maxlength -= 1
- range_max = torch.arange(maxlength, device=device, dtype=torch.int64)
- idx = i0.unsqueeze(-1) + range_max
- if adaptive:
- # Need to clamp to avoid accessing out-of-bounds memory
- # TODO make minimum accept scalars
- maxval = torch.scalar_tensor(
- in_size - 1, dtype=idx.dtype, device=idx.device
- )
- idx = torch.minimum(idx, maxval)
- # Compute the length
- i1 = end_index(orange, out_size, in_size)
- length = i1 - i0
- else:
- length = maxlength
- return idx, length, range_max, adaptive
- # length is not None if it's constant, otherwise we'll need to compute it
- idxh, length_h, range_max_h, adaptive_h = compute_idx(shape[-2], output_size[-2])
- idxw, length_w, range_max_w, adaptive_w = compute_idx(shape[-1], output_size[-1])
- vals = input[..., _unsqueeze_to_dim(idxh, 4), idxw]
- # Shortcut for the simpler case
- if not adaptive_h and not adaptive_w:
- return torch.mean(vals, dim=(-3, -1))
- def maybe_mask(vals, length, range_max, adaptive, dim):
- if isinstance(length, IntLike):
- return vals, length
- else:
- # zero-out the things we didn't really want to select
- assert dim < 0
- # hack
- mask = range_max >= length.unsqueeze(-1)
- if dim == -2:
- mask = _unsqueeze_to_dim(mask, 4)
- vals = torch.masked_fill(vals, mask, 0.0)
- # Compute the length of each window
- length = _unsqueeze_to_dim(length, -dim)
- return vals, length
- vals, length_h = maybe_mask(
- vals, length_h, range_max_h, adaptive=adaptive_h, dim=-2
- )
- vals, length_w = maybe_mask(
- vals, length_w, range_max_w, adaptive=adaptive_w, dim=-1
- )
- # We unroll the sum as we assume that the kernels are going to be small
- ret = None
- for i, j in product(range(vals.shape[-3]), range(vals.shape[-1])):
- if ret is None:
- ret = vals[..., i, :, j]
- else:
- ret = ret + vals[..., i, :, j]
- return ret / (length_h * length_w)
- @register_decomposition(aten.index_add_)
- def index_add_(
- x: TensorLike,
- dim: int,
- index: TensorLike,
- tensor: TensorLike,
- *,
- alpha: NumberType = 1,
- ):
- return _index_add(x, dim, index, tensor, inplace=True, alpha=alpha)
- @register_decomposition(aten.index_add)
- @out_wrapper()
- def index_add(
- x: TensorLike,
- dim: int,
- index: TensorLike,
- tensor: TensorLike,
- *,
- alpha: NumberType = 1,
- ):
- return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha)
- def _index_add(
- x: TensorLike,
- dim: int,
- index: TensorLike,
- tensor: TensorLike,
- *,
- inplace: bool,
- alpha: NumberType = 1,
- ):
- dim = utils.canonicalize_dims(x.ndim, dim)
- torch._check(
- index.ndim <= 1,
- lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
- )
- index_size = index.size(0) if index.ndim == 1 else 1
- tensor_size = tensor.size(dim) if tensor.ndim > 0 else 1
- torch._check(
- tensor_size == index_size,
- lambda: f"Number of indices ({index_size}) should be equal to tensor.size(dim) ({tensor_size}), for {dim=}",
- )
- if alpha != 1:
- python_type = utils.dtype_to_type(x.dtype)
- torch._check(
- python_type == bool
- or utils.is_weakly_lesser_type(type(alpha), python_type),
- lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!",
- )
- tensor = tensor * alpha
- # Treat scalars as elements of \R^1
- zero_dim = x.ndim == 0
- x1 = x.unsqueeze(0) if zero_dim else x
- idx = (None,) * dim + (index,)
- index_put = aten.index_put_ if inplace else aten.index_put
- out = index_put(x1, idx, tensor, accumulate=True)
- if inplace:
- return x
- else:
- return out.squeeze(0) if zero_dim else out.contiguous()
- @register_decomposition(aten.pad_sequence.default)
- @aten.pad_sequence.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- def pad_sequence(sequences, batch_first=False, padding_value=0.0):
- torch._check(len(sequences) > 0, lambda: "received an empty list of sequences")
- sequences_size = len(sequences)
- max_size = sequences[0].size()
- trailing_dims = max_size[1:]
- max_len = max(x.size(0) for x in sequences)
- if batch_first:
- out_dims = (sequences_size, max_len)
- else:
- out_dims = (max_len, sequences_size)
- out_dims = out_dims + trailing_dims
- out = sequences[0].new_full(out_dims, padding_value)
- dim_paddings = (0, 0) * len(trailing_dims)
- for i in range(sequences_size):
- currseq = sequences[i]
- row = aten.constant_pad_nd(
- currseq, dim_paddings + (0, max_len - currseq.size(0)), padding_value
- )
- if batch_first:
- out = aten.select_scatter(out, row, dim=0, index=i)
- else:
- out = aten.select_scatter(out, row, dim=1, index=i)
- return out
- @register_decomposition(aten.index_copy_)
- def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
- return _index_copy(x, dim, index, tensor, inplace=True)
- @register_decomposition(aten.index_copy)
- @out_wrapper()
- def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
- return _index_copy(x, dim, index, tensor, inplace=False)
- def _index_copy(
- x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike, *, inplace: bool
- ):
- dim = utils.canonicalize_dims(x.ndim, dim)
- torch._check(
- index.ndim <= 1,
- lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
- )
- # Treat scalars as elements of \R^1
- zero_dim = x.ndim == 0
- x1 = x.unsqueeze(0) if zero_dim else x
- index = index.unsqueeze(0) if index.ndim == 0 else index
- idx = (None,) * dim + (index,)
- index_put = aten.index_put_ if inplace else aten.index_put
- out = index_put(x1, idx, tensor)
- if inplace:
- return x
- else:
- return out.squeeze(0) if zero_dim else out.contiguous()
- # nb: Should use acc_t, not op_math
- @register_decomposition(aten.log_sigmoid_forward)
- @out_wrapper("output", "buffer")
- @pw_cast_for_opmath
- def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]:
- min = torch.minimum(self.new_zeros(()), self)
- z = torch.exp(-torch.abs(self))
- if self.is_cuda:
- buffer = self.new_zeros((0,))
- else:
- buffer = z
- return min - torch.log1p(z), buffer
- @register_decomposition(aten.uniform)
- @out_wrapper()
- def uniform(
- x: Tensor,
- low: Union[bool, int, float] = 0.0,
- high: Union[bool, int, float] = 1.0,
- generator: Optional[torch.Generator] = None,
- ):
- return prims._uniform_helper(
- x.shape,
- low=sym_float(low),
- high=sym_float(high),
- dtype=x.dtype,
- device=x.device,
- generator=generator,
- )
- @register_decomposition(aten.uniform_)
- def uniform_(self, low=0, high=1, generator=None):
- return self.copy_(uniform(self, low, high, generator))
- # aten/src/ATen/native/UpSample.cpp compute_output_size
- def upsample_compute_output_size(input_size, output_size, scale_factors):
- spatial_dimensions = len(input_size) - 2
- if output_size is not None:
- torch._check(
- scale_factors is None,
- lambda: "Must specify exactly one of output_size and scale_factors",
- )
- torch._check(len(output_size) == spatial_dimensions, lambda: "")
- return output_size
- if scale_factors is not None:
- # NB: this isn't necessary lol
- torch._check(
- output_size is None,
- lambda: "Must specify exactly one of output_size and scale_factors",
- )
- torch._check(len(scale_factors) == spatial_dimensions, lambda: "")
- output_size = []
- for i, s in enumerate(scale_factors):
- if int(s) == s:
- output_size.append(input_size[i + 2] * int(s))
- else:
- output_size.append(sym_int(input_size[i + 2] * s))
- return output_size
- torch._check(
- False, lambda: "Must specify exactly one of output_size and scale_factors"
- )
- def get_scale_value(scales, idx):
- if scales is None:
- return None
- return scales[idx]
- @register_decomposition(aten.upsample_nearest1d.vec)
- @register_decomposition(aten.upsample_nearest2d.vec)
- @register_decomposition(aten.upsample_nearest3d.vec)
- @aten.upsample_nearest1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest1d.vec.py_impl(DispatchKey.Autograd)
- @aten.upsample_nearest2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest2d.vec.py_impl(DispatchKey.Autograd)
- @aten.upsample_nearest3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest3d.vec.py_impl(DispatchKey.Autograd)
- def _upsample_nearest_vec(
- input: Tensor,
- output_size: Optional[List[int]],
- scale_factors: Optional[List[float]],
- ) -> Tensor:
- osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
- scales = (
- scale_factors if scale_factors else [None] * len(osize) # type: ignore[list-item]
- )
- return _upsample_nearest(input, osize, scales)
- @register_decomposition(aten._upsample_nearest_exact1d.vec)
- @register_decomposition(aten._upsample_nearest_exact2d.vec)
- @register_decomposition(aten._upsample_nearest_exact3d.vec)
- @aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.Autograd)
- @aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.Autograd)
- @aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.Autograd)
- def _upsample_nearest_exact_vec(
- input: Tensor,
- output_size: Optional[List[int]],
- scale_factors: Optional[List[float]],
- ) -> Tensor:
- osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
- scales = (
- scale_factors if scale_factors else [None] * len(osize) # type: ignore[list-item]
- )
- return _upsample_nearest(input, osize, scales, exact=True)
- def _compute_upsample_nearest_indices(input, output_size, scales, exact=False):
- # For each dim in output_size, compute the set of input indices used
- # to produce the upsampled output.
- indices = []
- num_spatial_dims = len(output_size)
- offset = 0.5 if exact else 0.0
- for d in range(num_spatial_dims):
- # Math matches aten/src/ATen/native/cpu/UpSampleKernel.cpp
- #
- # Indices are computed as following:
- # scale = isize / osize
- # Case: exact=False
- # input_index = floor(output_index * scale)
- # Same as OpenCV INTER_NEAREST
- #
- # Case: exact=False
- # index_f32 = (output_index + 0.5) * scale - 0.5
- # input_index = round(index_f32)
- # Same as Pillow and Scikit-Image/Scipy ndi.zoom
- osize = output_size[d]
- isize = input.shape[-num_spatial_dims + d]
- scale = isize / (isize * scales[d]) if scales[d] is not None else isize / osize
- output_indices = torch.arange(osize, dtype=torch.float32, device=input.device)
- input_indices = ((output_indices + offset) * scale).to(torch.int64)
- for _ in range(num_spatial_dims - 1 - d):
- input_indices = input_indices.unsqueeze(-1)
- indices.append(input_indices)
- return indices
- @register_decomposition([aten.upsample_nearest1d.default, aten.upsample_nearest1d.out])
- @aten.upsample_nearest1d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest1d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def upsample_nearest1d(
- input: Tensor,
- output_size: List[int],
- scales: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(input, output_size, [scales])
- @register_decomposition(
- [aten._upsample_nearest_exact1d.default, aten._upsample_nearest_exact1d.out]
- )
- @aten._upsample_nearest_exact1d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact1d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def upsample_nearest_exact1d(
- input: Tensor,
- output_size: List[int],
- scales: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(input, output_size, [scales], exact=True)
- @register_decomposition([aten.upsample_nearest2d.default, aten.upsample_nearest2d.out])
- @aten.upsample_nearest2d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest2d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def upsample_nearest2d(
- input: Tensor,
- output_size: List[int],
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(input, output_size, [scales_h, scales_w])
- @register_decomposition(
- [aten._upsample_nearest_exact2d.default, aten._upsample_nearest_exact2d.out]
- )
- @aten._upsample_nearest_exact2d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact2d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def _upsample_nearest_exact2d(
- input: Tensor,
- output_size: List[int],
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(input, output_size, [scales_h, scales_w], exact=True)
- @register_decomposition([aten.upsample_nearest3d.default, aten.upsample_nearest3d.out])
- @aten.upsample_nearest3d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_nearest3d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def upsample_nearest3d(
- input: Tensor,
- output_size: List[int],
- scales_d: Optional[float] = None,
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(input, output_size, [scales_d, scales_h, scales_w])
- @register_decomposition(
- [aten._upsample_nearest_exact3d.default, aten._upsample_nearest_exact3d.out]
- )
- @aten._upsample_nearest_exact3d.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_nearest_exact3d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper(preserve_memory_format=True, exact_dtype=True)
- def _upsample_nearest_exact3d(
- input: Tensor,
- output_size: List[int],
- scales_d: Optional[float] = None,
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_nearest(
- input, output_size, [scales_d, scales_h, scales_w], exact=True
- )
- @pw_cast_for_opmath
- def _upsample_nearest(
- input: Tensor,
- output_size: List[int],
- scales: List[Optional[float]],
- exact: bool = False,
- ) -> Tensor:
- spatial_indices = _compute_upsample_nearest_indices(
- input, output_size, scales, exact=exact
- )
- indices = [None, None] + spatial_indices
- result = aten._unsafe_index(input, indices)
- if result.ndim == 4:
- # convert output to correct memory format, if necessary
- memory_format = utils.suggest_memory_format(input)
- # following "heuristic: only use channels_last path when it's faster than the contiguous path"
- n_channels = input.shape[1]
- if input.device.type == "cuda" and n_channels < 4:
- memory_format = torch.contiguous_format
- result = result.contiguous(memory_format=memory_format)
- return result
- def gather_params(params, has_biases, has_projections):
- if has_biases and has_projections:
- group_size = 5
- elif has_biases:
- group_size = 4
- elif has_projections:
- group_size = 3
- else:
- group_size = 2
- assert len(params) % group_size == 0, len(params)
- return [
- tuple(params[i : i + group_size]) for i in range(0, len(params), group_size)
- ]
- def params_hiddens(params, hiddens, i, bidirectional):
- if bidirectional:
- cur_params, cur_hidden = params[2 * i], hiddens[2 * i]
- bidir_params, bidir_hidden = params[2 * i + 1], hiddens[2 * i + 1]
- else:
- cur_params, cur_hidden = params[i], hiddens[i]
- bidir_params, bidir_hidden = None, None
- return cur_params, cur_hidden, bidir_params, bidir_hidden
- def update_hidden_for_packed(cur_hidden, last_batch_size, batch_size, hiddens):
- assert last_batch_size > batch_size
- hiddens.append(cur_hidden.narrow(0, batch_size, last_batch_size - batch_size))
- return cur_hidden.narrow(0, 0, batch_size)
- def update_hidden_for_packed_reverse(
- cur_hidden, last_batch_size, batch_size, inp_hidden
- ):
- if last_batch_size == batch_size:
- return cur_hidden
- assert last_batch_size < batch_size
- return torch.concat(
- (
- cur_hidden,
- inp_hidden.narrow(0, last_batch_size, batch_size - last_batch_size),
- )
- )
- def one_layer_rnn_data(
- inp, hidden, params, has_biases, hidden_fn, batch_sizes, reverse=False
- ):
- ih_weight = params[0]
- hh_weight = params[1]
- ih_bias = params[2] if has_biases else None
- hh_bias = params[3] if has_biases else None
- step_output = []
- hiddens: List[torch.Tensor] = []
- last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0]
- cur_hidden = hidden.narrow(0, 0, last_batch_size)
- split_inp = torch.split(inp, list(batch_sizes))
- if reverse:
- split_inp = split_inp[::-1]
- for inp in split_inp:
- i = inp.shape[0]
- if last_batch_size == i:
- pass # don't update cur_hidden
- # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest
- elif reverse:
- cur_hidden = update_hidden_for_packed_reverse(
- cur_hidden, last_batch_size, i, hidden
- )
- else:
- cur_hidden = update_hidden_for_packed(
- cur_hidden, last_batch_size, i, hiddens
- )
- cur_hidden = hidden_fn(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias)
- last_batch_size = i
- step_output.append(cur_hidden)
- if reverse:
- step_output.reverse()
- else:
- hiddens.append(cur_hidden)
- hiddens.reverse()
- out = torch.cat(step_output, 0)
- hidden_out = torch.cat(hiddens, 0) if not reverse else cur_hidden
- return out, hidden_out
- def rnn_cell(nonlinearity):
- def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
- return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i)
- return inner
- def rnn_cell_data(nonlinearity):
- def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
- i = F.linear(i, ih_weight, ih_bias)
- return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i)
- return inner
- def one_layer_rnn(inp, hidden, params, has_biases, hidden_fn, reverse=False):
- ih_weight = params[0]
- hh_weight = params[1]
- ih_bias = params[2] if has_biases else None
- hh_bias = params[3] if has_biases else None
- precomputed_input = F.linear(inp, ih_weight, ih_bias)
- precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input
- cur_hidden = hidden.unsqueeze(0)
- step_output = []
- for i in precomputed_input:
- cur_hidden = hidden_fn(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias)
- step_output.append(cur_hidden)
- if reverse:
- step_output.reverse()
- out = torch.cat(step_output, 0)
- return out, cur_hidden.squeeze(0)
- def mkldnn_one_layer_lstm(inp, hidden, params, has_biases, reverse=False):
- w0 = params[0]
- w1 = params[1]
- if has_biases:
- w2 = params[2]
- w3 = params[3]
- else:
- w2 = torch.zeros(w0.size())
- w3 = torch.zeros(w1.size())
- hx = hidden[0].unsqueeze(0)
- cx = hidden[1].unsqueeze(0)
- batch_sizes: List[int] = []
- mode = 2 # third_party/ideep/include/ideep/abstract_types.hpp: ideep::rnn_kind::LSTM = 2
- hidden_size = hx.size(2)
- num_layers = 1
- # _rnn_helper already handles bidirectional and batch_first so we hard-code them to False here
- bidirectional = False
- batch_first = False
- train = False
- # If batch_first, inp has been permuted in _rnn_helper. Convert to contiguous here.
- # Same as aten/src/ATen/native/mkldnn/RNN.cpp: mkldnn_rnn: input = input.contiguous();
- inp = inp.contiguous()
- hx = hx.contiguous()
- cx = cx.contiguous()
- outputs = torch.ops.aten.mkldnn_rnn_layer.default(
- inp,
- w0,
- w1,
- w2,
- w3,
- hx,
- cx,
- reverse,
- batch_sizes,
- mode,
- hidden_size,
- num_layers,
- has_biases,
- bidirectional,
- batch_first,
- train,
- )
- y, hy, cy = outputs[0], outputs[1], outputs[2]
- return y, (hy.squeeze(0), cy.squeeze(0))
- def _rnn_helper(
- input,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- layer_fn,
- ):
- input = input.transpose(0, 1) if batch_first else input
- final_hiddens = []
- for i in range(num_layers):
- cur_params, cur_hidden, bidir_params, bidir_hidden = params_hiddens(
- params, hidden, i, bidirectional
- )
- dropout = dropout if (train and num_layers < i - 1) else 0.0
- fwd_inp, fwd_hidden = layer_fn(input, cur_hidden, cur_params, has_biases)
- final_hiddens.append(fwd_hidden)
- if bidirectional:
- bwd_inp, bwd_hidden = layer_fn(
- input, bidir_hidden, bidir_params, has_biases, reverse=True
- )
- final_hiddens.append(bwd_hidden)
- if bidirectional:
- input = torch.cat([fwd_inp, bwd_inp], fwd_inp.dim() - 1) # type: ignore[possibly-undefined]
- else:
- input = fwd_inp
- if dropout != 0 and train and i < num_layers - 1:
- input = torch.dropout(input, dropout, train=True)
- input = input.transpose(0, 1) if batch_first else input
- return input, final_hiddens
- @register_decomposition(aten.rnn_tanh.input)
- @aten.rnn_tanh.input.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.rnn_tanh.input.py_impl(DispatchKey.Autograd)
- def rnn_tanh_input(
- input,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- ):
- hidden = hx.unbind(0)
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- input,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- partial(one_layer_rnn, hidden_fn=rnn_cell(torch.tanh)),
- )
- return out, torch.stack(final_hiddens, 0)
- @register_decomposition(aten.rnn_relu.input)
- @aten.rnn_relu.input.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.rnn_relu.input.py_impl(DispatchKey.Autograd)
- def rnn_relu_input(
- input,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- ):
- hidden = hx.unbind(0)
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- input,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- partial(one_layer_rnn, hidden_fn=rnn_cell(torch.relu)),
- )
- return out, torch.stack(final_hiddens, 0)
- @register_decomposition(aten.rnn_relu.data)
- @aten.rnn_relu.data.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.rnn_relu.data.py_impl(DispatchKey.Autograd)
- def rnn_relu_data(
- data,
- batch_sizes,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- ):
- hidden = hx.unbind(0)
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- data,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- False,
- partial(
- one_layer_rnn_data,
- batch_sizes=batch_sizes,
- hidden_fn=rnn_cell_data(torch.relu),
- ),
- )
- return out, torch.stack(final_hiddens, 0)
- @register_decomposition(aten.rnn_tanh.data)
- @aten.rnn_tanh.data.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.rnn_tanh.data.py_impl(DispatchKey.Autograd)
- def rnn_tanh_data(
- data,
- batch_sizes,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- ):
- hidden = hx.unbind(0)
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- data,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- False,
- partial(
- one_layer_rnn_data,
- batch_sizes=batch_sizes,
- hidden_fn=rnn_cell_data(torch.tanh),
- ),
- )
- return out, torch.stack(final_hiddens, 0)
- def lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim):
- gates = F.linear(hx, hh_weight, hh_bias) + inp
- chunked_gates = gates.chunk(4, chunk_dim)
- in_gate = chunked_gates[0].sigmoid()
- forget_gate = chunked_gates[1].sigmoid()
- cell_gate = chunked_gates[2].tanh()
- out_gate = chunked_gates[3].sigmoid()
- cy = forget_gate * cx + (in_gate * cell_gate)
- hy = out_gate * cy.tanh()
- hy = hy if hr_weight is None else F.linear(hy, hr_weight, None)
- return hy, cy
- def one_layer_lstm(inp, hidden, params, has_biases, reverse=False):
- ih_weight = params[0]
- hh_weight = params[1]
- ih_bias = params[2] if has_biases else None
- hh_bias = params[3] if has_biases else None
- hr_weight = (
- params[4] if len(params) == 5 else params[2] if len(params) == 3 else None
- )
- hx = hidden[0].unsqueeze(0)
- cx = hidden[1].unsqueeze(0)
- precomputed_input = F.linear(inp, ih_weight, ih_bias)
- precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input
- step_output = []
- for inp in precomputed_input:
- hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=2)
- step_output.append(hx)
- if reverse:
- step_output.reverse()
- out = torch.cat(step_output, 0)
- return out, (hx.squeeze(1), cx.squeeze(1))
- def one_layer_lstm_data(inp, hidden, params, has_biases, batch_sizes, reverse=False):
- ih_weight = params[0]
- hh_weight = params[1]
- ih_bias = params[2] if has_biases else None
- hh_bias = params[3] if has_biases else None
- hr_weight = (
- params[4] if len(params) == 5 else params[2] if len(params) == 3 else None
- )
- step_output = []
- hiddens = []
- last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0]
- split_inp = torch.split(inp, list(batch_sizes))
- if reverse:
- split_inp = split_inp[::-1]
- orig_hx = hidden[0]
- orig_cx = hidden[1]
- hx, cx = orig_hx.narrow(0, 0, last_batch_size), orig_cx.narrow(
- 0, 0, last_batch_size
- )
- for inp in split_inp:
- i = inp.shape[0]
- inp = F.linear(inp, ih_weight, ih_bias)
- # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest
- if i < last_batch_size:
- hiddens.append(
- (
- hx.narrow(0, i, last_batch_size - i),
- cx.narrow(0, i, last_batch_size - i),
- )
- )
- hx, cx = hx.narrow(0, 0, i), cx.narrow(0, 0, i)
- # this will only happen when reverse=True
- if i > last_batch_size:
- hx = torch.concat(
- (hx, orig_hx.narrow(0, last_batch_size, i - last_batch_size)), 0
- )
- cx = torch.concat(
- (cx, orig_cx.narrow(0, last_batch_size, i - last_batch_size)), 0
- )
- hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=1)
- last_batch_size = i
- step_output.append(hx)
- if reverse:
- step_output.reverse()
- hidden_out = (hx, cx)
- else:
- hiddens.append((hx, cx))
- hiddens.reverse()
- hidden0, hidden1 = zip(*hiddens)
- hidden_out = torch.cat(hidden0, 0), torch.cat(hidden1, 0)
- out = torch.cat(step_output, 0)
- return out, hidden_out
- def select_one_layer_lstm_function(input, hx, params):
- r"""Check whether we could use decompose lstm with mkldnn_rnn_layer.
- All the below conditions need to be met:
- * ``torch._C._get_mkldnn_enabled()`` returns ``True``.
- * All the input args are on CPU.
- * The dtypes of args are either torch.float or torch.bfloat16.
- * Inference.
- * ``has_projections`` returns ``False``.
- Args:
- * input: the input sequence to LSTM
- * hx: a tuple of the input hidden state and cell state ``(h_0, c_0)`` to LSTM
- * params: the weight and bias tensors of LSTM
- """
- def use_mkldnn(input, hx, params):
- if not torch._C._get_mkldnn_enabled():
- return False
- tensors = [input] + list(hx) + list(chain.from_iterable(params))
- devices = {t.device for t in tensors}
- if len(devices) != 1:
- return False
- device = devices.pop()
- if device != torch.device("cpu"):
- return False
- # With autocast, possible to have mixed dtype here
- dtypes = {t.dtype for t in tensors}
- for dtype in dtypes:
- if dtype not in [torch.float, torch.bfloat16]:
- return False
- if input.requires_grad:
- return False
- has_projections = hx[0].size(2) != hx[1].size(2)
- if has_projections:
- return False
- return True
- # mkldnn_one_layer_lstm does not depend on seq_len while one_layer_lstm
- # will expand over the seq_len dim
- if use_mkldnn(input, hx, params):
- return mkldnn_one_layer_lstm
- else:
- return one_layer_lstm
- @register_decomposition(aten.lstm.input)
- @aten.lstm.input.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.lstm.input.py_impl(DispatchKey.Autograd)
- def lstm_impl(
- input,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- ):
- assert len(hx) == 2, "lstm expects two hidden states"
- params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2))
- hidden = list(zip(hx[0], hx[1]))
- layer_fn = select_one_layer_lstm_function(input, hx, params)
- out, final_hiddens = _rnn_helper(
- input,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- layer_fn,
- )
- final_hiddens = list(zip(*final_hiddens))
- return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0)
- @register_decomposition(aten.lstm.data)
- @aten.lstm.data.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.lstm.data.py_impl(DispatchKey.Autograd)
- def lstm_data_impl(
- data,
- batch_sizes,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- ):
- assert len(hx) == 2, "lstm expects two hidden states"
- params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2))
- hidden = list(zip(hx[0], hx[1]))
- out, final_hiddens = _rnn_helper(
- data,
- hidden,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- False,
- partial(one_layer_lstm_data, batch_sizes=batch_sizes),
- )
- final_hiddens = list(zip(*final_hiddens))
- return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0)
- def gru_cell(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
- chunked_igates = inp.chunk(3, 1)
- chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 2)
- reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid()
- input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid()
- new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh()
- return (cur_hidden - new_gate) * input_gate + new_gate
- def gru_cell_data(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
- chunked_igates = F.linear(inp, ih_weight, ih_bias).chunk(3, 1)
- chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 1)
- reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid()
- input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid()
- new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh()
- return (cur_hidden - new_gate) * input_gate + new_gate
- @register_decomposition(aten.gru.data)
- @aten.gru.data.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.gru.data.py_impl(DispatchKey.Autograd)
- def gru_impl_data(
- data,
- batch_sizes,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- ):
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- data,
- hx.unbind(0),
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- False,
- partial(one_layer_rnn_data, batch_sizes=batch_sizes, hidden_fn=gru_cell_data),
- )
- return out, torch.stack(final_hiddens, 0)
- @register_decomposition(aten.gru.input)
- @aten.gru.input.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.gru.input.py_impl(DispatchKey.Autograd)
- def gru_impl(
- input,
- hx,
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- ):
- params = gather_params(params, has_biases, False)
- out, final_hiddens = _rnn_helper(
- input,
- hx.unbind(0),
- params,
- has_biases,
- num_layers,
- dropout,
- train,
- bidirectional,
- batch_first,
- partial(one_layer_rnn, hidden_fn=gru_cell),
- )
- return out, torch.stack(final_hiddens, 0)
- @register_decomposition(aten._upsample_bilinear2d_aa.vec)
- @aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.Autograd)
- def upsample_bilinear2d_aa_vec(input, output_size, align_corners, scale_factors):
- osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
- scale_h = get_scale_value(scale_factors, 0)
- scale_w = get_scale_value(scale_factors, 1)
- return torch.ops.aten._upsample_bilinear2d_aa(
- input, osize, align_corners, scale_h, scale_w
- )
- @register_decomposition(aten._upsample_bicubic2d_aa.vec)
- @aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.Autograd)
- def upsample_bicubic2d_aa_vec(input, output_size, align_corners, scale_factors):
- osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
- scale_h = get_scale_value(scale_factors, 0)
- scale_w = get_scale_value(scale_factors, 1)
- return torch.ops.aten._upsample_bicubic2d_aa(
- input, osize, align_corners, scale_h, scale_w
- )
- @register_decomposition(aten.upsample_bilinear2d.vec)
- @register_decomposition(aten.upsample_trilinear3d.vec)
- @aten.upsample_linear1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_linear1d.vec.py_impl(DispatchKey.Autograd)
- @aten.upsample_bilinear2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_bilinear2d.vec.py_impl(DispatchKey.Autograd)
- @aten.upsample_trilinear3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_trilinear3d.vec.py_impl(DispatchKey.Autograd)
- def _upsample_linear_vec(input, output_size, align_corners, scale_factors):
- osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
- scales = scale_factors if scale_factors else [None] * len(osize)
- return _upsample_linear(input, osize, align_corners, scales)
- @register_decomposition([aten.upsample_linear1d.default, aten.upsample_linear1d.out])
- @out_wrapper()
- def upsample_linear1d(
- input: Tensor,
- output_size: List[int],
- align_corners: bool,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_linear(input, output_size, align_corners, [scales_w])
- @register_decomposition(
- [aten.upsample_bilinear2d.default, aten.upsample_bilinear2d.out]
- )
- @aten.upsample_bilinear2d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper()
- def upsample_bilinear2d(
- input: Tensor,
- output_size: List[int],
- align_corners: bool,
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_linear(input, output_size, align_corners, [scales_h, scales_w])
- @register_decomposition(
- [aten.upsample_trilinear3d.default, aten.upsample_trilinear3d.out]
- )
- @out_wrapper()
- def upsample_trilinear3d(
- input: Tensor,
- output_size: List[int],
- align_corners: bool,
- scales_d: Optional[float] = None,
- scales_h: Optional[float] = None,
- scales_w: Optional[float] = None,
- ) -> Tensor:
- return _upsample_linear(
- input, output_size, align_corners, [scales_d, scales_h, scales_w]
- )
- def _compute_scale(in_size, out_size, align_corners, scale=None):
- if align_corners:
- return (in_size - 1.0) / (out_size - 1.0) if out_size > 1 else 0
- else:
- return 1.0 / scale if scale is not None and scale > 0 else in_size / out_size
- def _compute_source_index(scale, dst_index, align_corners):
- if align_corners:
- return scale * dst_index
- else:
- return scale * (dst_index + 0.5) - 0.5
- def _sum_tensors_uint8(
- src: Iterable[Tensor], weights: Iterable[Tensor], weights_precision: Tensor
- ) -> Tensor:
- output = _sum_tensors(
- s.to(torch.int32) * c.to(torch.int32) for s, c in zip(src, weights)
- ) + (1 << (weights_precision - 1))
- output = output >> weights_precision
- return torch.clamp(output, 0, 255).to(torch.uint8)
- def _compute_weight_precision(weights: TensorSequenceType) -> Tensor:
- max_weight = torch.stack(weights).max()
- max_weight_precision = 22
- precisions = torch.arange(max_weight_precision, device=max_weight.device)
- values = 0.5 + max_weight * (1 << (precisions + 1))
- mask = values >= (1 << 15)
- return max_weight_precision - mask.sum()
- @pw_cast_for_opmath
- def _upsample_linear(
- input: Tensor,
- output_size: List[int],
- align_corners: bool,
- scales: List[Optional[float]],
- ) -> Tensor:
- # get dimensions of original image
- n_batch, n_channels = input.shape[:2]
- inp_sizes = input.shape[2:]
- n_dims = len(inp_sizes)
- _, dtype = utils.elementwise_dtypes(
- input,
- type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
- )
- def get_values(inp_size, out_size, scales, nsqueeze):
- # First Calculate scaling factor
- scale_factor = _compute_scale(inp_size, out_size, align_corners, scales)
- # We have to create arange with int64 dtype and use .to in order to avoid
- # additional kernels creation in inductor and get a perf slowdown
- i = torch.arange(out_size, device=input.device).to(dtype=dtype)
- x_f32 = _compute_source_index(scale_factor, i, align_corners).clamp(min=0.0)
- x_f32 = x_f32.reshape(x_f32.shape[0], *[1] * (nsqueeze))
- x = x_f32.to(torch.int64)
- xp1 = (x + 1).clamp(max=inp_size - 1)
- return x_f32, x, xp1
- values = [
- get_values(inp_size, out_size, scales, n_dims - 1 - i)
- for i, (inp_size, out_size, scales) in enumerate(
- zip(inp_sizes, output_size, scales)
- )
- ]
- xs_f32, xs, xp1s = list(zip(*values))
- vs = []
- for a in product(*[[0, 1]] * n_dims):
- idx = [None, None] + [xs[k] if a[k] == 0 else xp1s[k] for k in range(n_dims)]
- v = aten._unsafe_index(input, idx)
- v = _maybe_convert_to_dtype(v, dtype)
- vs.append(v)
- for i in reversed(range(n_dims)):
- xscale = (xs_f32[i] - xs[i]).clamp(0.0, 1.0).to(dtype)
- vs = [
- # x1 * (1 - alpha) + x2 * alpha == x1 + (x2 - x1) * alpha
- v1 + torch.mul(v2 - v1, xscale)
- for v1, v2 in zip(vs[::2], vs[1::2])
- ]
- assert len(vs) == 1
- result = vs[0]
- # convert output to correct memory format, if necessary
- memory_format = utils.suggest_memory_format(input)
- # following "heuristic: only use channels_last path when it's faster than the contiguous path"
- if input.device.type == "cuda" and n_channels < 16:
- memory_format = torch.contiguous_format
- assert isinstance(result, torch.Tensor)
- result = result.contiguous(memory_format=memory_format)
- if not input.is_floating_point():
- result = result.round()
- return result
- # We should be applying decompositions after all transformations
- @register_decomposition(aten.is_same_size.default)
- def is_same_size(a: Tensor, b: Tensor) -> bool:
- return a.shape == b.shape
- @register_decomposition([aten._reshape_alias, aten._unsafe_view])
- @out_wrapper()
- def _reshape_alias(x, shape, *args):
- return aten.view(x, shape)
- @register_decomposition([aten._unsafe_index])
- def _index(x, indices):
- return aten.index(x, indices)
- def _nll_loss_forward(
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- ) -> Tuple[Tensor, Tensor]:
- # self can be [N, C] or [C]
- # target can be [N] or []
- n_dims = self.dim()
- channel_dim = 1
- if n_dims < 2:
- channel_dim = 0
- if weight is not None:
- if n_dims > 1:
- shape = [
- 1,
- ] * n_dims
- shape[channel_dim] = weight.shape[0]
- w = weight.view(shape)
- else:
- w = weight
- self = self * w
- safe_target = torch.where(target != ignore_index, target, 0)
- safe_target_ = safe_target.unsqueeze(channel_dim)
- # target can be [N, 1] or [1]
- result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim)
- result = torch.where(target != ignore_index, result, 0)
- if reduction == Reduction.NONE.value and n_dims > 1:
- total_weight = self.new_full((), 0.0)
- return result, total_weight
- if weight is not None:
- w = w.expand(self.shape)
- wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim)
- wsum = torch.where(target != ignore_index, wsum, 0)
- total_weight = wsum.sum()
- else:
- total_weight = (target != ignore_index).sum().to(self)
- if reduction == Reduction.SUM.value:
- result = result.sum()
- elif reduction == Reduction.MEAN.value:
- result = result.sum() / total_weight
- return result, total_weight
- @register_decomposition(aten.nll_loss_forward)
- @out_wrapper("output", "total_weight")
- def nll_loss_forward(
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- ) -> Tuple[Tensor, Tensor]:
- assert self.dim() > 0 and self.dim() <= 2, "input tensor should be 1D or 2D"
- assert (
- target.dim() <= 1
- ), "0D or 1D target tensor expected, multi-target not supported"
- no_batch_dim = self.dim() == 1 and target.dim() == 0
- assert no_batch_dim or (
- self.shape[0] == target.shape[0]
- ), f"size mismatch (got input: {self.shape}, target: {target.shape})"
- n_classes = self.shape[-1]
- assert weight is None or (
- weight.dim() == 1 and weight.numel() == n_classes
- ), f"weight tensor should be defined either for all {n_classes} classes or no classes but got weight tensor of shape: {weight.shape}" # noqa: B950
- return _nll_loss_forward(self, target, weight, reduction, ignore_index)
- @register_decomposition(aten.nll_loss2d_forward)
- @out_wrapper("output", "total_weight")
- def nll_loss2d_forward(
- self: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- ) -> Tuple[Tensor, Tensor]:
- return _nll_loss_forward(self, target, weight, reduction, ignore_index)
- # These are adapted from aten/src/ATen/native/UpSample.h, wich is based on
- # https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
- def _upsample_cubic_convolution1(x: Tensor, A: float) -> Tensor:
- return ((A + 2) * x - (A + 3)) * x * x + 1
- def _upsample_cubic_convolution2(x: Tensor, A: float) -> Tensor:
- return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A
- def _upsample_get_cubic_coefficients(t: Tensor) -> TensorSequenceType:
- A = -0.75
- if t.device == torch.device("cpu"):
- tt1 = torch.stack([t, 1.0 - t], dim=0)
- tt2 = torch.stack([t + 1.0, 2.0 - t], dim=0)
- w03 = _upsample_cubic_convolution2(tt2, A)
- w12 = _upsample_cubic_convolution1(tt1, A)
- w0, w3 = torch.unbind(w03, dim=0)
- w1, w2 = torch.unbind(w12, dim=0)
- return w0, w1, w2, w3
- else:
- return (
- _upsample_cubic_convolution2(t + 1.0, A),
- _upsample_cubic_convolution1(t, A),
- _upsample_cubic_convolution1(1.0 - t, A),
- _upsample_cubic_convolution2(2.0 - t, A),
- )
- def _upsample_cubic_interp1d(coeffs: TensorSequenceType, ts: Tensor) -> Tensor:
- coeffs2 = _upsample_get_cubic_coefficients(ts)
- return _sum_tensors(c1 * c2 for (c1, c2) in zip(coeffs, coeffs2))
- # Need this instead of just sum() to keep mypy happy
- def _sum_tensors(ts: Iterable[Tensor]) -> Tensor:
- return reduce(torch.add, ts)
- def _linspace_from_neg_one(
- num_steps: int, align_corners: bool, dtype: torch.dtype, device: torch.device
- ):
- if num_steps <= 1:
- return torch.tensor(0, device=device, dtype=dtype)
- a = ((num_steps - 1) / num_steps) if not align_corners else 1
- return torch.linspace(-a, a, steps=num_steps, device=device, dtype=dtype)
- def _make_base_grid_4d(theta: Tensor, h: int, w: int, align_corners: bool):
- dtype = theta.dtype
- device = theta.device
- # Using padding and summation generates a single kernel vs using torch.stack where 3 kernels generated
- # corresponding to each individual tensor: grid_x, grid_y, grid_one
- grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, w, 1)
- grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(h, 1, 1)
- grid_one = torch.ones((1, 1, 1), dtype=dtype, device=device)
- # this is just a temporary hack and we should use torch.stack here once #104480 is merged
- grid_x = torch.nn.functional.pad(grid_x, pad=(0, 2), mode="constant", value=0)
- grid_y = torch.nn.functional.pad(grid_y, pad=(1, 1), mode="constant", value=0)
- grid_one = torch.nn.functional.pad(grid_one, pad=(2, 0), mode="constant", value=0)
- return grid_x + grid_y + grid_one
- def _make_base_grid_5d(theta: Tensor, d: int, h: int, w: int, align_corners: bool):
- dtype = theta.dtype
- device = theta.device
- grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, 1, w, 1)
- grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(1, h, 1, 1)
- grid_z = _linspace_from_neg_one(d, align_corners, dtype, device).view(d, 1, 1, 1)
- grid_one = torch.ones((1, 1, 1, 1), dtype=dtype, device=device)
- # this is just a temporary hack and we should use torch.stack here once #104480 is merged
- grid_x = torch.nn.functional.pad(grid_x, pad=(0, 3), mode="constant", value=0)
- grid_y = torch.nn.functional.pad(grid_y, pad=(1, 2), mode="constant", value=0)
- grid_z = torch.nn.functional.pad(grid_z, pad=(2, 1), mode="constant", value=0)
- grid_one = torch.nn.functional.pad(grid_one, pad=(3, 0), mode="constant", value=0)
- return grid_x + grid_y + grid_z + grid_one
- def _affine_grid_generator_4d(theta: Tensor, size: List[int], align_corners: bool):
- n, _, h, w = size
- base_grid = _make_base_grid_4d(theta, h, w, align_corners=align_corners)
- # base_grid shape is (h, w, 3) and theta shape is (n, 2, 3)
- # We do manually a matrix multiplication which is faster than mm()
- # (h * w, 3, 1) * (n, 1, 3, 2) -> (n, h * w, 2)
- grid = (base_grid.view(-1, 3, 1) * theta.mT.unsqueeze(1)).sum(-2)
- return grid.view(n, h, w, 2)
- def _affine_grid_generator_5d(theta: Tensor, size: List[int], align_corners: bool):
- n, _, d, h, w = size
- base_grid = _make_base_grid_5d(theta, d, h, w, align_corners=align_corners)
- # base_grid shape is (d, h, w, 4) and theta shape is (n, 3, 4)
- # We do manually a matrix multiplication which is faster than mm()
- # (d * h * w, 4, 1) * (n, 1, 4, 3) -> (n, h * w, 3)
- grid = (base_grid.view(-1, 4, 1) * theta.mT.unsqueeze(1)).sum(-2)
- return grid.view(n, d, h, w, 3)
- @register_decomposition(aten.affine_grid_generator)
- @out_wrapper()
- @pw_cast_for_opmath
- def affine_grid_generator(theta: Tensor, size: List[int], align_corners: bool):
- torch._check(
- len(size) in (4, 5),
- lambda: "affine_grid_generator needs 4d (spatial) or 5d (volumetric) inputs.",
- )
- if len(size) == 4:
- return _affine_grid_generator_4d(theta, size, align_corners=align_corners)
- else:
- return _affine_grid_generator_5d(theta, size, align_corners=align_corners)
- def _grid_sampler_2d(
- a: Tensor,
- grid: Tensor,
- interpolation_mode: int = 0,
- padding_mode: int = 0,
- align_corners: bool = False,
- _expand_grid: bool = True,
- ) -> Tensor:
- # This method is a copy of grid_sampler_2d implementation and introduced with additional arg _expand_grid to
- # optionally expand the input grid for performance reasons.
- # Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
- # and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
- # However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
- # Thus we apply this hack to not expand the grid for this case.
- torch._check(
- interpolation_mode in (0, 1, 2),
- lambda: f"Invalid interpolation mode {interpolation_mode}",
- )
- torch._check(
- padding_mode in (0, 1, 2), lambda: f"Invalid padding mode {padding_mode}"
- )
- def unnormalize(coords: Tensor, size: int) -> Tensor:
- # Rescale coordinates from [-1, 1] to:
- # [0, size - 1] if align_corners is True
- # [-.5, size -.5] if align_corners is False
- mul = (size * 0.5 - 0.5) if align_corners else (size * 0.5)
- ofs = size * 0.5 - 0.5
- return coords * mul + ofs
- # Reflects coordinates until they fall between low and high (inclusive).
- # The bounds are passed as twice their value so that half-integer values
- # can be represented as ints.
- def reflect_coordinates(coords: Tensor, twice_low: int, twice_high: int) -> Tensor:
- if twice_low == twice_high:
- return torch.zeros_like(coords)
- coords_min = twice_low / 2
- coords_span = (twice_high - twice_low) / 2
- coords2 = (coords - coords_min).abs()
- extra = torch.fmod(coords2, coords_span)
- flips = (coords2 / coords_span).floor().to(dtype=torch.int8)
- return torch.where(
- flips & 1 == 0, extra + coords_min, coords_span + coords_min - extra
- )
- def compute_coordinates(coords: Tensor, size: int) -> Tensor:
- if padding_mode == 0: # Zero
- return coords
- elif padding_mode == 1: # Borders
- return torch.clamp(coords, 0, size - 1)
- else: # padding_mode == 2, Reflection
- if align_corners:
- coords_reflected = reflect_coordinates(coords, 0, 2 * (size - 1))
- else:
- coords_reflected = reflect_coordinates(coords, -1, 2 * size - 1)
- return torch.clamp(coords_reflected, 0, size - 1)
- def compute_source_index(coords: Tensor, size: int) -> Tensor:
- coords_un = unnormalize(coords, size)
- return compute_coordinates(coords_un, size)
- N, C, iH, iW = a.shape
- _, oH, oW, two = grid.shape
- assert two == 2
- if _expand_grid:
- # Let's expand grid to [N, C, oH, oW, 2]
- # This allows to generate a single triton cuda kernel instead of two kernels.
- # Two kernels are due source indices, weights have shape (N, 1, oH, oW), xnumel=N*oH*oW
- # and output has shape (N, C, oH, oW), xnumel=N*C*oH*oW
- # Expanding grid to (N, C, oH, oW, two) unifies xnumel to N*C*oH*oW
- grid = grid.view(N, 1, oH, oW, two).expand(N, C, oH, oW, 2)
- def in_bounds_cond(xs: Tensor, ys: Tensor) -> Tensor:
- return torch.logical_and(
- 0 <= xs, torch.logical_and(xs < iW, torch.logical_and(0 <= ys, ys < iH))
- )
- N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1)
- C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1)
- def clip(xs: Tensor, ys: Tensor, ws: Tensor) -> TensorSequenceType:
- cond = in_bounds_cond(xs, ys)
- # To clip to inside valid coordinates, we map the coordinates
- # to (x, y) = (0, 0) and also set the weight to 0
- # We also change the shape of the tensor to the appropriate one for
- # broadcasting with N_idx, C_idx for the purposes of advanced indexing
- c = C if _expand_grid else 1
- return tuple(
- torch.where(cond, t, 0).view(N, c, oH, oW)
- for t in (xs.to(dtype=torch.int64), ys.to(dtype=torch.int64), ws)
- )
- def get_summand(ix: Tensor, iy: Tensor, w) -> Tensor:
- # Perform clipping, index into input tensor and multiply by weight
- idx_x, idx_y, w_ = clip(ix, iy, w)
- return a[N_idx, C_idx, idx_y, idx_x] * w_
- x = grid[..., 0]
- y = grid[..., 1]
- if interpolation_mode == 0: # Bilinear
- ix = compute_source_index(x, iW)
- iy = compute_source_index(y, iH)
- ix_nw, iy_nw = ix.floor(), iy.floor()
- ix_ne, iy_ne = ix_nw + 1, iy_nw
- ix_sw, iy_sw = ix_nw, iy_nw + 1
- ix_se, iy_se = ix_ne, iy_sw
- w_nw = (ix_se - ix) * (iy_se - iy)
- w_ne = (ix - ix_sw) * (iy_sw - iy)
- w_sw = (ix_ne - ix) * (iy - iy_ne)
- w_se = (ix - ix_nw) * (iy - iy_nw)
- return _sum_tensors(
- get_summand(ix, iy, w)
- for (ix, iy, w) in (
- (ix_nw, iy_nw, w_nw),
- (ix_ne, iy_ne, w_ne),
- (ix_sw, iy_sw, w_sw),
- (ix_se, iy_se, w_se),
- )
- )
- elif interpolation_mode == 1: # Nearest
- ix = compute_source_index(x, iW)
- iy = compute_source_index(y, iH)
- ix_nearest = ix.round()
- iy_nearest = iy.round()
- return get_summand(ix_nearest, iy_nearest, 1)
- else: # interpolation_mode == 2, Bicubic
- ix = unnormalize(x, iW)
- iy = unnormalize(y, iH)
- ix_nw = ix.floor()
- iy_nw = iy.floor()
- tx = ix - ix_nw
- ty = iy - iy_nw
- if not _expand_grid:
- tx = tx.unsqueeze(1)
- ty = ty.unsqueeze(1)
- def get_value_bounded(ix: Tensor, iy: Tensor) -> Tensor:
- x = compute_coordinates(ix, iW)
- y = compute_coordinates(iy, iH)
- return get_summand(x, y, 1)
- def get_coeff(ofs: int) -> Tensor:
- iy_ofs = iy_nw + (ofs - 1)
- cs = (
- get_value_bounded(ix_nw - 1, iy_ofs),
- get_value_bounded(ix_nw, iy_ofs),
- get_value_bounded(ix_nw + 1, iy_ofs),
- get_value_bounded(ix_nw + 2, iy_ofs),
- )
- return _upsample_cubic_interp1d(cs, tx)
- coeffs = tuple(get_coeff(ofs) for ofs in range(4))
- return _upsample_cubic_interp1d(coeffs, ty)
- @register_decomposition(aten.grid_sampler_2d)
- @out_wrapper()
- @pw_cast_for_opmath
- def grid_sampler_2d(
- a: Tensor,
- grid: Tensor,
- interpolation_mode: int = 0,
- padding_mode: int = 0,
- align_corners: bool = False,
- ) -> Tensor:
- return _grid_sampler_2d(
- a,
- grid=grid,
- interpolation_mode=interpolation_mode,
- padding_mode=padding_mode,
- align_corners=align_corners,
- )
- @register_decomposition(aten.mv)
- @out_wrapper()
- @pw_cast_for_opmath
- def mv(self, vec):
- torch._check(
- self.dim() == 2 and vec.dim() == 1,
- lambda: f"matrix @ vector expected, got {self.dim()}, {vec.dim()}",
- )
- torch._check(
- self.size(1) == vec.size(0),
- lambda: f"size mismatch, got input ({self.size(0)}x{self.size(1)}), vec ({vec.size(0)})",
- )
- return (self * vec).sum(dim=1)
- @register_decomposition(aten.binary_cross_entropy_with_logits)
- @out_wrapper()
- def binary_cross_entropy_with_logits(
- self, target, weight=None, pos_weight=None, reduction=Reduction.MEAN.value
- ):
- if pos_weight is not None:
- log_weight = (pos_weight - 1) * target + 1
- loss = (1 - target) * self - (log_weight * F.logsigmoid(self))
- else:
- loss = (1 - target) * self - F.logsigmoid(self)
- if weight is not None:
- loss = loss * weight
- return apply_loss_reduction(loss, reduction)
- def should_fold(tensor1: torch.Tensor, tensor2: torch.Tensor, is_out: bool) -> bool:
- # For comments of the logic of this function see eager in /native/LinearAlgebra.cpp
- t1, t2 = (tensor1, tensor2) if tensor1.ndim >= tensor2.ndim else (tensor2, tensor1)
- from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
- if not (t1.ndim >= 3 and t2.ndim <= 2):
- return False
- if t2.requires_grad and not is_out:
- return True
- if tensor1.ndim == 2:
- return False
- if guard_size_oblivious(t1.numel() == 0):
- return True
- t1_shape = t1.shape
- t1_stride = t1.stride()
- return all(
- st1 == st2 * s2
- for (st1, st2, s2) in zip(t1_stride[:-2], t1_stride[1:-1], t1_shape[1:-1])
- )
- @aten.matmul.default.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.matmul.out.py_impl(DispatchKey.CompositeImplicitAutograd)
- @out_wrapper(pass_is_out=True)
- def matmul(tensor1, tensor2, *, is_out=False):
- dim_tensor1 = tensor1.dim()
- dim_tensor2 = tensor2.dim()
- assert dim_tensor1 != 0 and dim_tensor2 != 0
- if dim_tensor1 == 1 and dim_tensor2 == 1:
- return torch.dot(tensor1, tensor2)
- elif dim_tensor1 == 2 and dim_tensor2 == 1:
- return torch.mv(tensor1, tensor2)
- elif dim_tensor1 == 1 and dim_tensor2 == 2:
- return torch.squeeze(torch.mm(torch.unsqueeze(tensor1, 0), tensor2), 0)
- elif dim_tensor1 == 2 and dim_tensor2 == 2:
- return torch.mm(tensor1, tensor2)
- elif should_fold(tensor1, tensor2, is_out):
- # dim_tensor1 >=3 && (dim_tensor2 == 1 || dim_tensor2 == 2) ||
- # dim_tensor2 >=3 && (dim_tensor1 == 1 || dim_tensor1 == 2)
- # and some condition on the strides is fulfilled
- # optimization: use mm instead of bmm by folding the batch of the larger tensor
- # into its leading matrix dimension
- transpose = dim_tensor2 > dim_tensor1
- t1 = tensor2.mT if transpose else tensor1
- t2 = (
- tensor2 if not transpose else (tensor1.t() if dim_tensor1 == 2 else tensor1)
- )
- # Invariant: t1.dim() >= 3 && (t2.dim() == 1 || t2.dim() == 2)
- # and t1 and t2 are matmul-compatible
- # Why not t1.view(-1, sizes_1[-1])?
- # If the last dim is 0, then view(-1, 0) won't work because the -1 becomes ambiguous.
- # This can happen in e.g. [3, 5, 0] @ [0, 0].
- sizes_1 = t1.shape
- output_shape = list(sizes_1[:-1])
- folded_dim1 = reduce(operator.mul, output_shape)
- # Readjust output_shape if we are multiplying by a matrix
- t2_is_matrix = t2.dim() == 2
- if t2_is_matrix:
- output_shape.append(t2.shape[1])
- # This will almost always be a view.
- # It may not be a view if t2->requires_grad(). See should_fold in aten/ for an explanation
- t1_folded = t1.reshape(folded_dim1, sizes_1[-1])
- if t2_is_matrix:
- # This copies if we perform a 2D @ 3D and the first tensor requires_grad
- # See should_fold native/LinearAlgebra.cpp for why.
- output = t1_folded.mm(t2).view(output_shape)
- return output.mT.contiguous() if transpose else output
- else:
- return t1_folded.mv(t2).view(output_shape)
- elif dim_tensor1 >= 1 and dim_tensor2 >= 1:
- # We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list);
- # we track m1 vs m2 separately even though they must match for nicer error messages
- n = tensor1.size(-2) if dim_tensor1 > 1 else 1
- m1 = tensor1.size(-1)
- batch_tensor1 = tensor1.shape[:-2]
- m2 = tensor2.size(-2) if dim_tensor2 > 1 else tensor2.size(-1)
- p = tensor2.size(-1) if dim_tensor2 > 1 else 1
- batch_tensor2: List[int] = []
- # TODO: handling of slice
- for i in range(dim_tensor2 - 2):
- batch_tensor2.append(tensor2.size(i))
- # Same optimization for the gradients as that in should_fold
- # If we're going to broadcast, we force it to go through the should_fold branch
- if (
- dim_tensor1 == 3
- and dim_tensor2 == 3
- and batch_tensor1[0] != batch_tensor2[0]
- ):
- if batch_tensor1[0] == 1 and tensor1.requires_grad:
- return matmul(tensor1.squeeze(0), tensor2)
- if batch_tensor2[0] == 1 and tensor2.requires_grad:
- return matmul(tensor1, tensor2.squeeze(0))
- # expand the batch portion (i.e. cut off matrix dimensions and expand rest)
- expand_batch_portion = list(
- torch.broadcast_shapes(batch_tensor1, batch_tensor2)
- )
- tensor1_expand_size = expand_batch_portion + [n, m1]
- expand_batch_product = prod(expand_batch_portion)
- # HACK: We need reshape with symint support
- tensor1_expanded = tensor1.expand(tensor1_expand_size).reshape(
- expand_batch_product, n, m1
- )
- vector_rhs = dim_tensor2 == 1
- if vector_rhs:
- tensor2_expand_size = expand_batch_portion + [m2]
- tensor2_expanded = (
- tensor2.expand(tensor2_expand_size)
- .reshape(expand_batch_product, m2)
- .unsqueeze(2)
- )
- else:
- tensor2_expand_size = expand_batch_portion + [m2, p]
- tensor2_expanded = tensor2.expand(tensor2_expand_size).reshape(
- expand_batch_product, m2, p
- )
- output_shape = expand_batch_portion
- if dim_tensor1 > 1:
- output_shape.append(n)
- if dim_tensor2 > 1:
- output_shape.append(p)
- if vector_rhs:
- return tensor1_expanded.bmm(tensor2_expanded).squeeze(-1).view(output_shape)
- else:
- return tensor1_expanded.bmm(tensor2_expanded).view(output_shape)
- else:
- torch._check(False, lambda: "both arguments to matmul need to be at least 1D")
- @register_decomposition([aten.upsample_bicubic2d.default, aten.upsample_bicubic2d.out])
- @aten.upsample_bicubic2d.default.py_impl(DispatchKey.Autograd)
- @out_wrapper()
- @pw_cast_for_opmath
- def upsample_bicubic2d_default(
- input: Tensor,
- output_size: Tuple[int, int],
- align_corners: bool,
- scale_h: Optional[float] = None,
- scale_w: Optional[float] = None,
- ) -> Tensor:
- # get dimensions of original image
- _, _, in_h, in_w = input.shape
- # Calculate horizontal and vertical scaling factor
- h_scale_factor = _compute_scale(in_h, output_size[0], align_corners, scale_h)
- w_scale_factor = _compute_scale(in_w, output_size[1], align_corners, scale_w)
- _, dtype = utils.elementwise_dtypes(
- input, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
- )
- # We have to create arange with int64 dtype and use .to in order to avoid
- # additional kernels creation in inductor and get a perf slowdown
- i = torch.arange(output_size[0], device=input.device).to(dtype=dtype)
- j = torch.arange(output_size[1], device=input.device).to(dtype=dtype)
- x_float = _compute_source_index(w_scale_factor, j, align_corners)
- y_float = _compute_source_index(h_scale_factor, i, align_corners)
- y_float = y_float.unsqueeze(-1)
- x = x_float.floor()
- y = y_float.floor()
- # We should also clamp xscale/yscale
- # See guard_index_and_lambda in UpSample.h
- yscale = (y_float - y).clamp(0.0, 1.0)
- xscale = (x_float - x).clamp(0.0, 1.0)
- x = x.to(torch.int64)
- y = y.to(torch.int64)
- iys_ofs = (y - 1, y, y + 1, y + 2)
- ixs_ofs = (x - 1, x, x + 1, x + 2)
- weights_x = _upsample_get_cubic_coefficients(xscale)
- weights_y = _upsample_get_cubic_coefficients(yscale)
- weights_precision_x, weights_precision_y = None, None
- if input.dtype == torch.uint8:
- weights_precision_x = _compute_weight_precision(weights_x)
- weights_precision_y = _compute_weight_precision(weights_y)
- weights_x = [
- (w * (1 << weights_precision_x) + torch.sign(w) * 0.5).to(torch.int16)
- for w in weights_x
- ]
- weights_y = [
- (w * (1 << weights_precision_y) + torch.sign(w) * 0.5).to(torch.int16)
- for w in weights_y
- ]
- def load_bounded(ys, xs):
- y_idx = torch.clamp(ys, 0, in_h - 1)
- x_idx = torch.clamp(xs, 0, in_w - 1)
- v = aten._unsafe_index(input, [None, None, y_idx, x_idx])
- return v
- def get_x_interp(y):
- src_x = tuple(load_bounded(y, x_ofs) for x_ofs in ixs_ofs)
- if input.dtype == torch.uint8:
- assert weights_precision_x is not None
- return _sum_tensors_uint8(src_x, weights_x, weights_precision_x)
- return _sum_tensors(c1 * c2 for (c1, c2) in zip(src_x, weights_x))
- src_y = tuple(get_x_interp(y_ofs) for y_ofs in iys_ofs)
- if input.dtype == torch.uint8:
- assert weights_precision_y is not None
- result = _sum_tensors_uint8(src_y, weights_y, weights_precision_y)
- else:
- result = _sum_tensors(c1 * c2 for (c1, c2) in zip(src_y, weights_y))
- # convert output to correct memory format, if necessary
- memory_format = utils.suggest_memory_format(input)
- result = result.contiguous(memory_format=memory_format)
- return result
- @register_decomposition(aten.upsample_bicubic2d.vec)
- @aten.upsample_bicubic2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
- @aten.upsample_bicubic2d.vec.py_impl(DispatchKey.Autograd)
- @out_wrapper()
- @pw_cast_for_opmath
- def upsample_bicubic2d_vec(
- a: Tensor,
- output_size: Optional[Tuple[int, int]],
- align_corners: bool,
- scale_factors: Optional[Tuple[float, float]] = None,
- ) -> Tensor:
- torch._check(
- bool(output_size) + bool(scale_factors) == 1,
- lambda: "Must specify exactly one of output_size and scale_factors.",
- )
- if output_size is None:
- assert scale_factors is not None
- output_size = cast(
- Tuple[int, int],
- tuple(
- sym_int(sym_float(w) * scale)
- for w, scale in zip(a.shape[2:], scale_factors)
- ),
- )
- scale_h, scale_w = scale_factors if scale_factors else (None, None)
- return upsample_bicubic2d_default(a, output_size, align_corners, scale_h, scale_w)
- @register_decomposition(aten.reflection_pad1d)
- @register_decomposition(aten.reflection_pad2d)
- @register_decomposition(aten.reflection_pad3d)
- @pw_cast_for_opmath
- @out_wrapper()
- def _reflection_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
- def idx(left, middle, right):
- dim_idx = torch.arange(-left, middle + right, device=a.device)
- return middle - 1 - (middle - 1 - dim_idx.abs()).abs()
- return _reflection_or_replication_pad(
- a,
- padding,
- idx,
- )
- @register_decomposition(aten.replication_pad1d)
- @register_decomposition(aten.replication_pad2d)
- @register_decomposition(aten.replication_pad3d)
- @pw_cast_for_opmath
- @out_wrapper()
- def _replication_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
- def idx(left, middle, right):
- dim_idx = torch.arange(-left, middle + right, device=a.device)
- return torch.clamp(dim_idx, 0, middle - 1)
- return _reflection_or_replication_pad(
- a,
- padding,
- idx,
- )
- def _reflection_or_replication_pad(
- a: Tensor,
- padding: Tuple[int, ...],
- idx_fn: Callable[[int, int, int], Tensor],
- ) -> Tensor:
- dim = len(padding) // 2
- torch._check(
- a.dim() in (dim + 1, dim + 2),
- lambda: f"reflection_pad{dim}d requires {dim + 1}D or {dim + 2}D input",
- )
- inp_shape = a.shape[-dim:]
- nc_dim = a.dim() - dim
- padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)]
- padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)]
- result = a
- for i in range(dim):
- idx: List[Any] = [None] * result.dim()
- idx[i + nc_dim] = idx_fn(padding_left[i], inp_shape[i], padding_right[i])
- result = aten._unsafe_index(result, idx)
- # convert output to correct memory format, if necessary
- memory_format = utils.suggest_memory_format(result)
- result = result.contiguous(memory_format=memory_format)
- return result
- @register_decomposition(aten.aminmax)
- @out_wrapper("min", "max")
- def aminmax(self, *, dim=None, keepdim=False):
- amin = torch.amin(self, dim=dim, keepdim=keepdim)
- amax = torch.amax(self, dim=dim, keepdim=keepdim)
- return amin, amax
- @register_decomposition(aten.nansum)
- @out_wrapper()
- def nansum(self, dim=None, keepdim=False, *, dtype=None):
- return aten.sum(torch.where(torch.isnan(self), 0, self), dim, keepdim, dtype=dtype)
- @register_decomposition([aten.arange.default, aten.arange.out])
- @out_wrapper()
- def arange_default(
- end: NumberType,
- *,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- pin_memory: bool = False,
- ):
- return aten.arange.start_step(
- 0, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
- )
- @register_decomposition([aten.arange.start])
- def arange_start(
- start: NumberType,
- end: NumberType,
- *,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- pin_memory: bool = False,
- ):
- return aten.arange.start_step(
- start, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
- )
- @register_decomposition(out_dtype)
- def out_dtype_decomp(*args, **kwargs):
- from torch._higher_order_ops.out_dtype import out_dtype_dense
- return out_dtype_dense(*args, **kwargs)
- @register_decomposition(aten.multi_margin_loss)
- @aten.multi_margin_loss.default.py_impl(DispatchKey.Autograd)
- @out_wrapper()
- def multi_margin_loss(
- input: Tensor,
- target: Tensor,
- p: NumberType = 1,
- margin: NumberType = 1,
- weight: Optional[Tensor] = None,
- reduction: int = Reduction.MEAN.value,
- ) -> Tensor:
- input = torch.atleast_2d(input)
- target = torch.atleast_1d(target)
- nframe = input.shape[0]
- dim = input.shape[1]
- torch._check(p == 1 or p == 2, lambda: "only p == 1 and p == 2 supported")
- torch._check(
- input.ndim == 2 and dim != 0,
- lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {input.shape}",
- )
- torch._check(
- target.ndim == 1 and target.numel() == nframe,
- lambda: f"inconsistent target size, expected {nframe} but got {target.shape}",
- )
- if weight is not None:
- weight = torch.atleast_1d(weight)
- torch._check(
- weight.ndim == 1 and weight.numel() == dim, # type: ignore[union-attr]
- lambda: f"inconsistent weight size, expected {dim} but got {weight.shape}", # type: ignore[union-attr]
- )
- target = target.unsqueeze(1)
- u = torch.gather(input, dim=1, index=target)
- z = margin - u + input
- z = z.clamp_min(0)
- z = z if p == 1 else z * z
- if weight is not None:
- z = z * weight[target]
- idx = torch.arange(dim, device=input.device)
- z = torch.where(idx != target, z, 0)
- if reduction == Reduction.MEAN.value:
- return z.mean()
- elif reduction == Reduction.SUM.value:
- return z.sum() / z.shape[1]
- else:
- return z.mean(dim=1)
- @register_decomposition(aten.multilabel_margin_loss_forward)
- @aten.multilabel_margin_loss_forward.default.py_impl(DispatchKey.Autograd)
- @out_wrapper("output", "is_target")
- def multilabel_margin_loss_forward(
- input: Tensor,
- target: Tensor,
- reduction: int,
- ) -> Tuple[Tensor, Tensor]:
- orig_input_shape = input.shape
- orig_target_shape = target.shape
- input = torch.atleast_2d(input)
- target = torch.atleast_2d(target)
- dim = input.shape[1]
- torch._check(
- len(orig_input_shape) <= 2 and dim != 0,
- lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {orig_input_shape}",
- )
- torch._check(
- len(orig_target_shape) <= 2 and orig_target_shape == orig_input_shape,
- lambda: f"inconsistent target size: {orig_target_shape} for input of size: {orig_input_shape}",
- )
- # ignores labels after the first -1, detects when -1 is not present
- idx = torch.arange(dim, device=target.device)
- is_end = target == -1
- end_idx = torch.amin(torch.where(is_end, idx, dim), dim=-1, keepdim=True)
- # target indices
- target_mask = idx < end_idx
- # masks target to be able to use gather, which doesn't allow -1
- tidx0 = torch.where(target_mask, target, 0)
- u = torch.gather(input, dim=-1, index=tidx0)
- # is_target
- tidx1 = torch.where(target_mask, target, -1)
- is_target = torch.any(idx == tidx1.unsqueeze(dim=-1), dim=1)
- # loss
- z = 1.0 - u.T.unsqueeze(dim=-1) + input
- z = z.clamp_min(0)
- z = z / dim
- # masks loss
- z = torch.where(is_target, 0, z)
- # reduction
- if reduction == Reduction.MEAN.value:
- z = z.sum(dim=(0, -1)).mean()
- elif reduction == Reduction.SUM.value:
- z = z.sum()
- else:
- z = z.sum(dim=(0, -1))
- # result
- is_target = is_target.to(input.dtype).reshape(orig_target_shape)
- return z, is_target
- # scaled_dot_product_attention used to be decomposed in pre-autograd, given that
- # it calls _scaled_dot_product_attention_math and
- # _scaled_dot_product_attention_math only has a CompositeImplicitAutograd
- # kernel. As a result it's decomposed into ops with finer granularity.
- # However recent PRs (#103826 #105131 #115913) added new logic in
- # scaled_dot_product_attention and now it calls
- # _scaled_dot_product_flash_attention_for_cpu in export path. This results
- # in _scaled_dot_product_flash_attention_for_cpu showing up in export result.
- # This decomposition ensures scaled_dot_product_attention is still decomposed
- # the same way as before, i.e., going through
- # _scaled_dot_product_attention_math. Notice that this decomp rule should be
- # excluded by inductor.
- @register_decomposition(aten._scaled_dot_product_flash_attention_for_cpu.default)
- def scaled_dot_product_flash_attention_for_cpu(
- query: Tensor,
- key: Tensor,
- value: Tensor,
- dropout_p: float = 0.0,
- is_causal: bool = False,
- *,
- attn_mask: Optional[Tensor] = None,
- scale: Optional[float] = None,
- ) -> Tuple[Tensor, Tensor]:
- dtype = query.dtype
- torch._check(
- torch.is_floating_point(query),
- lambda: f"query must be FP32, FP64, BF16, FP16 but got {query.dtype}",
- )
- torch._check(
- query.dim() == 4 and key.dim() == 4 and value.dim() == 4,
- lambda: f"q, k, v must be a 4 dimensional tensor, got {query.dim()}, {key.dim()}, {value.dim()}",
- )
- torch._check(
- dropout_p == 0.0, lambda: f"dropout probability must be zero, got {dropout_p}"
- )
- torch._check(
- query.shape[3] == value.shape[3] and key.shape[3] == value.shape[3],
- lambda: "q, k, v should have the same head size",
- )
- output, attn = aten._scaled_dot_product_attention_math.default(
- query,
- key,
- value,
- attn_mask=attn_mask,
- dropout_p=dropout_p,
- is_causal=is_causal,
- dropout_mask=None,
- scale=scale,
- )
- # Why this change?
- # In pre-dispatch export scaled_dot_product_attention is executed via
- # * flash_attention.
- # flash_attention allocates output tensor as (N, L, H, E)
- # it then transposes that to get (N, H, L, E) which is supposed to be the return
- # tensor dim for scaled_dot_product_attention
- # assume x: [N, H, L, E] is the output sdpa
- # In MHA code, this output is then permuted via (2, 0, 1, 3) to get
- # (L, N, H, E) dim tensor
- # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via
- # x = x.view(L * N, H * E)
- # During pre autograd dispatch call to contiguous is not traced because
- # flash_attention output after the x.permute is already contiguous
- # on which the view is valid
- # However, during 2nd stage export, post-dispatch, we run _match variant
- # instead of flash* to get the decomposition. _match variant returns
- # x: [N, H, L, E] applying x.permute(2, 0, 1, 3) returns
- # x: [L, N, H, E] and without converting this to contiguous tensor
- # subsequent view is not valid and the export fails
- # solution is to maintain the return tensor view from the decomp to be
- # exactly same as *flash* variant.
- # flash variants output is contiguous as [N, L, H, E]
- # _match variant out is contiguous as [N, H, L, E]
- # out = out.transpose(1, 2).contiguous gets output as contiguous
- # in [N, L, H, E].
- # Subsrequent transpose(1, 2) then returns a view on which
- # aforementioned code snippet, as showm below, is valid
- # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via
- # x = x.view(L * N, H * E)
- # Really the invariant you want to maintain is:
- # pre-dispatch op-output and its decomposed representation must
- # return tensor with same view and dims
- output = output.transpose(1, 2).contiguous(memory_format=torch.contiguous_format)
- return (output.transpose(1, 2), attn)
- def register_inplace(aten_op, outplace_op):
- @register_decomposition(aten_op)
- def inplace_op(*args, **kwargs):
- out = outplace_op(*args, **kwargs)
- return args[0].copy_(out)
- return inplace_op
- @register_decomposition([aten.baddbmm])
- @out_wrapper()
- @pw_cast_for_opmath
- def baddbmm(self, batch1, batch2, beta=1, alpha=1):
- if not self.is_floating_point() and not self.is_complex():
- beta = int(beta)
- alpha = int(alpha)
- result = torch.bmm(batch1, batch2)
- if not isinstance(alpha, numbers.Number) or alpha != 1:
- result = result * alpha
- if beta == 0:
- return result
- if not isinstance(beta, numbers.Number) or beta != 1:
- self = self * beta
- return self + result
- @register_decomposition(aten.floor_divide)
- @out_wrapper()
- def floor_divide(self, other):
- return torch.div(self, other, rounding_mode="floor")
- @register_decomposition(aten.sym_numel)
- def sym_numel(t):
- return functools.reduce(operator.mul, t.shape, 1)
- @register_decomposition([aten.sum.default, aten.sum.out])
- def sum_default(
- self: Tensor,
- *,
- dtype: Optional[torch.dtype] = None,
- out: Optional[Tensor] = None,
- ) -> Tensor:
- if out is None:
- return aten.sum.dim_IntList(self, [], dtype=dtype)
- else:
- return aten.sum.IntList_out(self, [], dtype=dtype, out=out)
- @register_decomposition([aten.squeeze.default, aten.squeeze.dim])
- def squeeze_default(self: Tensor, dim: Optional[int] = None):
- if dim is None:
- return aten.squeeze.dims(self, list(range(self.dim())))
- else:
- return aten.squeeze.dims(self, [dim])
- @register_decomposition(torch.ops.aten._weight_norm_interface)
- def _weight_norm_interface(x, y, dim=0):
- # https://github.com/pytorch/pytorch/blob/852f8526c52190125446adc9a6ecbcc28fb66182/aten/src/ATen/native/WeightNorm.cpp#L58
- keep_dim = tuple(i for i in range(len(x.shape)) if i != dim)
- norm = x.norm(2, keep_dim, keepdim=True)
- return x * (y / norm), norm
- @register_decomposition(aten.isin)
- @out_wrapper()
- def isin(elements, test_elements, *, assume_unique=False, invert=False):
- # handle when either elements or test_elements are Scalars (they can't both be)
- if not isinstance(elements, torch.Tensor):
- elements = torch.tensor(elements, device=test_elements.device)
- if not isinstance(test_elements, torch.Tensor):
- test_elements = torch.tensor(test_elements, device=elements.device)
- if test_elements.numel() < 10.0 * pow(elements.numel(), 0.145):
- return isin_default(elements, test_elements, invert=invert)
- else:
- return isin_sorting(
- elements, test_elements, assume_unique=assume_unique, invert=invert
- )
- def isin_default(elements, test_elements, *, invert=False):
- if elements.numel() == 0:
- return torch.empty_like(elements, dtype=torch.bool)
- x = elements.view(*elements.shape, *((1,) * test_elements.ndim))
- if not invert:
- cmp = x == test_elements
- else:
- cmp = x != test_elements
- dim = tuple(range(-1, -test_elements.ndim - 1, -1))
- return cmp.any(dim=dim)
- def isin_sorting(elements, test_elements, *, assume_unique=False, invert=False):
- elements_flat = elements.flatten()
- test_elements_flat = test_elements.flatten()
- if assume_unique:
- # This is the same as the aten implementation. For
- # assume_unique=False, we cannot use unique() here, so we use a
- # version with searchsorted instead.
- all_elements = torch.cat([elements_flat, test_elements_flat])
- sorted_elements, sorted_order = torch.sort(all_elements, stable=True)
- duplicate_mask = sorted_elements[1:] == sorted_elements[:-1]
- duplicate_mask = torch.constant_pad_nd(duplicate_mask, [0, 1], False)
- if invert:
- duplicate_mask = duplicate_mask.logical_not()
- mask = torch.empty_like(duplicate_mask)
- mask = mask.index_copy(0, sorted_order, duplicate_mask)
- return mask[0 : elements.numel()]
- else:
- sorted_test_elements, _ = torch.sort(test_elements_flat)
- idx = torch.searchsorted(sorted_test_elements, elements_flat)
- test_idx = torch.where(idx < sorted_test_elements.numel(), idx, 0)
- cmp = sorted_test_elements[test_idx] == elements_flat
- cmp = cmp.logical_not() if invert else cmp
- return cmp.reshape(elements.shape)
- @register_decomposition(aten.take)
- @out_wrapper()
- def take(self, index):
- flattened = self.reshape(-1)
- return flattened[index]
- @register_decomposition(aten.resize_as)
- def resize_as(self, other, memory_format=None):
- if memory_format is None:
- memory_format = torch.contiguous_format
- if memory_format == torch.preserve_format:
- memory_format = suggest_memory_format(other)
- return aten.resize(self, other.shape, memory_format=memory_format)
- register_inplace(aten.addbmm_, aten.addbmm)
- register_inplace(aten.addmm_, aten.addmm)
- register_inplace(aten.addmv_, aten.addmv)
- register_inplace(aten.baddbmm_, aten.baddbmm)
- register_inplace(aten.fill_, aten.fill)
- register_inplace(aten.gelu_, aten.gelu)
- register_inplace(aten.hardswish_, aten.hardswish)
- register_inplace(aten.hardtanh_, aten.hardtanh)
- register_inplace(aten.hardsigmoid_, aten.hardsigmoid)
- register_inplace(aten.__iand__, aten.__and__)
- register_inplace(aten.__ilshift__, aten.__lshift__)
- register_inplace(aten.index_put_, aten.index_put)
- register_inplace(aten.index_reduce_, aten.index_reduce)
- register_inplace(aten.__ior__, aten.__or__)
- register_inplace(aten.__irshift__, aten.__rshift__)
- register_inplace(aten.__ixor__, aten.__xor__)
- register_inplace(aten.leaky_relu_, aten.leaky_relu)
- register_inplace(aten.logit_, aten.logit)
- register_inplace(aten.relu_, aten.relu)
- register_inplace(aten.renorm_, aten.renorm)
- register_inplace(aten.round_, aten.round)
- register_inplace(aten.scatter_, aten.scatter)
- register_inplace(aten.scatter_add_, aten.scatter_add)
- register_inplace(aten.scatter_reduce_, aten.scatter_reduce)
- register_inplace(aten.silu_, aten.silu)
|