| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- # mypy: allow-untyped-defs
- import contextlib
- import dis
- import functools
- import logging
- import os.path
- import random
- import re
- import sys
- import types
- import unittest
- from typing import List, Optional, Sequence, Union
- from unittest.mock import patch
- np: Optional[types.ModuleType] = None
- try:
- import numpy as np
- except ModuleNotFoundError:
- np = None
- import torch
- from torch import fx
- from torch._dynamo.output_graph import OutputGraph
- from . import config, eval_frame, optimize_assert, reset
- from .bytecode_transformation import (
- create_instruction,
- debug_checks,
- is_generator,
- transform_code_object,
- )
- from .guards import CheckFunctionManager, GuardedCode
- from .utils import same
- unsupported = eval_frame.unsupported
- three = 3
- log = logging.getLogger(__name__)
- def clone_me(x):
- if x is None:
- return None
- return x.detach().clone().requires_grad_(x.requires_grad)
- def remove_optimized_module_prefix(name) -> str:
- return re.sub(r"^_orig_mod[.]", "", name)
- def collect_results(model, prediction, loss, example_inputs):
- results = []
- results.append(prediction)
- results.append(loss)
- # if isinstance(loss, torch.Tensor) and loss.item() > 1:
- # log.warning(
- # f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
- # )
- grads = dict()
- params = dict()
- for name, param in model.named_parameters():
- if isinstance(model, eval_frame.OptimizedModule):
- name = remove_optimized_module_prefix(name)
- param_copy = param
- grad = param.grad
- # Treat None and zero grad as same
- if param.grad is None:
- grad = torch.zeros_like(param)
- grads[name + ".grad"] = grad
- params[name] = param_copy
- results.append(grads)
- results.append(params)
- buffers = dict()
- for name, buffer in model.named_buffers():
- if isinstance(model, eval_frame.OptimizedModule):
- name = remove_optimized_module_prefix(name)
- buffers[name] = buffer
- results.append(buffers)
- for example in example_inputs:
- if isinstance(example, (tuple, list)):
- for inp in example:
- if isinstance(inp, torch.Tensor):
- results.append(inp.grad)
- else:
- if isinstance(example, torch.Tensor):
- results.append(example.grad)
- return results
- def requires_bwd_pass(out):
- if isinstance(out, torch.Tensor):
- return out.requires_grad
- elif isinstance(out, (list, tuple)):
- return any(requires_bwd_pass(x) for x in out)
- elif out is None:
- return False
- elif isinstance(out, int):
- return False
- raise NotImplementedError("Don't know how to reduce", type(out))
- def reduce_to_scalar_loss(out):
- """Reduce the output of a model to get scalar loss"""
- if isinstance(out, torch.Tensor):
- # Mean does not work on integer tensors
- return out.sum() / out.numel()
- elif isinstance(out, (list, tuple)):
- return sum(reduce_to_scalar_loss(x) for x in out) / len(out)
- elif type(out).__name__ in (
- "MaskedLMOutput",
- "Seq2SeqLMOutput",
- "CausalLMOutputWithCrossAttentions",
- ):
- return reduce_to_scalar_loss(out.logits)
- elif type(out).__name__ == "SquashedNormal":
- return out.mean.sum()
- elif isinstance(out, dict):
- return sum(reduce_to_scalar_loss(value) for value in out.values()) / len(
- out.keys()
- )
- raise NotImplementedError("Don't know how to reduce", type(out))
- def debug_dir() -> str:
- path = os.path.join(os.path.dirname(__file__), "../debug")
- if not os.path.exists(path):
- os.mkdir(path)
- return path
- def debug_dump(name, code: types.CodeType, extra="") -> None:
- with open(os.path.join(debug_dir(), name), "w") as fd:
- fd.write(
- f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
- )
- def debug_insert_nops(
- frame, cache_size, hooks, _, *, skip: int = 0
- ) -> Optional[GuardedCode]:
- """used to debug jump updates"""
- def insert_nops(instructions, code_options):
- instructions.insert(0, create_instruction("NOP"))
- instructions.insert(0, create_instruction("NOP"))
- if is_generator(frame.f_code):
- return None
- debug_checks(frame.f_code)
- code = transform_code_object(frame.f_code, insert_nops)
- graph = OutputGraph(
- code_options={},
- compiler_fn=None,
- root_tx=None,
- export=False,
- export_constraints=None,
- frame_state={"_id": 0},
- # TODO: shouldn't this be f_locals/f_globals from frame?
- local_scope=locals(),
- global_scope=globals(),
- f_code=frame.f_code,
- )
- return GuardedCode(code, CheckFunctionManager(graph).check_fn)
- class CompileCounter:
- def __init__(self):
- self.frame_count = 0
- self.op_count = 0
- def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
- self.frame_count += 1
- for node in gm.graph.nodes:
- if "call" in node.op:
- self.op_count += 1
- return gm.forward
- def clear(self):
- self.frame_count = 0
- self.op_count = 0
- class CompileCounterWithBackend:
- def __init__(self, backend):
- self.frame_count = 0
- self.op_count = 0
- self.backend = backend
- self.graphs = []
- def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
- from .backends.registry import lookup_backend
- self.frame_count += 1
- for node in gm.graph.nodes:
- if "call" in node.op:
- self.op_count += 1
- self.graphs.append(gm)
- return lookup_backend(self.backend)(gm, example_inputs)
- # Equivalent to backend="eager", but also records graphs that
- # we can assert on
- class EagerAndRecordGraphs:
- def __init__(self):
- self.graphs = []
- def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
- self.graphs.append(gm)
- return gm.forward
- def strip_comment(code) -> str:
- code = str(code)
- return re.sub(r"(?m)^ *#.*\n?", "", code)
- def remove_trailing_space(code) -> str:
- return "\n".join([line.rstrip() for line in code.split("\n")])
- def normalize_gm(gm_str) -> str:
- # strip comments as comments have path to files which may differ from
- # system to system.
- return remove_trailing_space(strip_comment(gm_str))
- def standard_test(
- self,
- fn,
- nargs,
- expected_ops=None,
- expected_ops_dynamic=None,
- expected_frame_count=1,
- ):
- if not config.assume_static_by_default and expected_ops_dynamic is not None:
- expected_ops = expected_ops_dynamic
- actual = CompileCounter()
- args1 = [torch.randn(10, 10) for _ in range(nargs)]
- args2 = [torch.randn(10, 10) for _ in range(nargs)]
- correct1 = fn(*args1)
- correct2 = fn(*args2)
- reset()
- opt_fn = optimize_assert(actual)(fn)
- val1a = opt_fn(*args1)
- val2a = opt_fn(*args2)
- val1b = opt_fn(*args1)
- val2b = opt_fn(*args2)
- reset()
- self.assertTrue(same(val1a, correct1))
- self.assertTrue(same(val1b, correct1))
- self.assertTrue(same(val2a, correct2))
- self.assertTrue(same(val2b, correct2))
- self.assertEqual(actual.frame_count, expected_frame_count)
- if expected_ops is not None:
- self.assertEqual(actual.op_count, expected_ops)
- def dummy_fx_compile(gm: fx.GraphModule, example_inputs):
- return gm.forward
- def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1):
- if not is_correct:
- return "ERROR"
- if pvalue > pvalue_threshold:
- return f"{speedup:.3f}x SAME"
- return f"{speedup:.3f}x p={pvalue:.2f}"
- def rand_strided(
- size: Sequence[int],
- stride: Sequence[int],
- dtype: torch.dtype = torch.float32,
- device: Union[str, torch.device] = "cpu",
- extra_size: int = 0,
- ):
- needed_size = (
- sum((shape - 1) * stride for shape, stride in zip(size, stride))
- + 1
- + extra_size
- )
- if dtype.is_floating_point:
- if dtype.itemsize == 1:
- """
- normal distribution kernel is not implemented for fp8..
- Workaround that by creating a fp16 tensor and then cast.
- """
- buffer = torch.randn(needed_size, dtype=torch.float16, device=device).to(
- dtype=dtype
- )
- else:
- buffer = torch.randn(needed_size, dtype=dtype, device=device)
- else:
- buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
- return torch.as_strided(buffer, size, stride)
- def _make_fn_with_patches(fn, *patches):
- @functools.wraps(fn)
- def _fn(*args, **kwargs):
- with contextlib.ExitStack() as stack:
- for module, attr, val in patches:
- stack.enter_context(patch.object(module, attr, val))
- return fn(*args, **kwargs)
- return _fn
- def make_test_cls_with_patches(
- cls, cls_prefix, fn_suffix, *patches, xfail_prop=None, decorator=lambda x: x
- ):
- DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {})
- DummyTestClass.__qualname__ = DummyTestClass.__name__
- for name in dir(cls):
- if name.startswith("test_"):
- fn = getattr(cls, name)
- if not callable(fn):
- setattr(DummyTestClass, name, getattr(cls, name))
- continue
- new_name = f"{name}{fn_suffix}"
- new_fn = _make_fn_with_patches(fn, *patches)
- new_fn.__name__ = new_name
- if xfail_prop is not None and hasattr(fn, xfail_prop):
- new_fn = unittest.expectedFailure(new_fn)
- setattr(DummyTestClass, new_name, decorator(new_fn))
- # NB: Doesn't handle slots correctly, but whatever
- elif not hasattr(DummyTestClass, name):
- setattr(DummyTestClass, name, getattr(cls, name))
- return DummyTestClass
- # test Python 3.11+ specific features
- def skipIfNotPy311(fn):
- if sys.version_info >= (3, 11):
- return fn
- return unittest.skip(fn)
- def skipIfNotPy312(fn):
- if sys.version_info >= (3, 12):
- return fn
- return unittest.skip(fn)
- def xfailIfPy312(fn):
- if sys.version_info >= (3, 12):
- return unittest.expectedFailure(fn)
- return fn
- def skipIfPy312(fn):
- if sys.version_info >= (3, 12):
- return unittest.skip(fn)
- return fn
- # Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py
- # and test/dynamo/test_dynamic_shapes.py
- def expectedFailureDynamic(fn):
- fn._expected_failure_dynamic = True
- return fn
- # Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py
- def expectedFailureCodegenDynamic(fn):
- fn._expected_failure_codegen_dynamic = True
- return fn
- # Controls test generated in test/inductor/test_cpp_wrapper.py
- def expectedFailureDynamicWrapper(fn):
- fn._expected_failure_dynamic_wrapper = True
- return fn
- def reset_rng_state(use_xla=False):
- torch.manual_seed(1337)
- random.seed(1337)
- if np:
- np.random.seed(1337)
- if use_xla:
- import torch_xla.core.xla_model as xm
- xm.set_rng_state(1337, str(xm.xla_device()))
|