| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985 |
- # mypy: ignore-errors
- import contextlib
- import functools
- import inspect
- import itertools
- import logging
- import math
- import operator
- import types
- from collections import defaultdict, OrderedDict
- from typing import Dict, List
- import torch
- from torch import sym_float, sym_int
- from .. import config, polyfill, variables
- from ..exc import (
- AttributeMutationError,
- unimplemented,
- Unsupported,
- UserError,
- UserErrorType,
- )
- from ..guards import GuardBuilder, install_guard
- from ..replay_record import DummyModule
- from ..source import AttrSource, GetItemSource, is_constant_source, TypeSource
- from ..utils import (
- check_constant_args,
- check_numpy_ndarray_args,
- check_unspec_or_constant_args,
- check_unspec_python_args,
- extract_fake_example_value,
- get_fake_value,
- guard_if_dyn,
- istype,
- numpy_operator_wrapper,
- proxy_args_kwargs,
- tensortype_to_dtype,
- )
- from .base import MutableLocal, VariableTracker
- from .constant import ConstantVariable
- from .ctx_manager import EventVariable, StreamVariable
- from .dicts import (
- ConstDictVariable,
- DefaultDictVariable,
- DictView,
- is_hashable,
- SetVariable,
- )
- from .lists import (
- BaseListVariable,
- ListIteratorVariable,
- ListVariable,
- SizeVariable,
- TupleIteratorVariable,
- TupleVariable,
- )
- from .tensor import (
- FakeItemVariable,
- supported_comparison_ops,
- SymNodeVariable,
- TensorVariable,
- UnspecializedPythonVariable,
- )
- from .user_defined import UserDefinedObjectVariable, UserDefinedVariable
- log = logging.getLogger(__name__)
- IN_PLACE_DESUGARING_MAP = {
- operator.iadd: operator.add,
- operator.isub: operator.sub,
- operator.imul: operator.mul,
- operator.ifloordiv: operator.floordiv,
- operator.itruediv: operator.truediv,
- operator.imod: operator.mod,
- operator.imatmul: operator.imatmul,
- operator.ilshift: operator.lshift,
- operator.irshift: operator.rshift,
- operator.ipow: operator.pow,
- operator.iand: operator.and_,
- operator.ior: operator.or_,
- operator.ixor: operator.xor,
- }
- def _polyfill_call_impl(name):
- """Create a BuiltinVariable.call_{name} method that inlines through polyfill.{name}"""
- def call_fn(self, tx, *args, **kwargs):
- return tx.inline_user_function_return(
- variables.UserFunctionVariable(fn), args, kwargs
- )
- fn = getattr(polyfill, name)
- call_fn.__name__ = f"call_{name}"
- return call_fn
- class BuiltinVariable(VariableTracker):
- _SENTINEL = object()
- _nonvar_fields = {
- "fn",
- *VariableTracker._nonvar_fields,
- }
- @classmethod
- def create_with_source(cls, value, source):
- install_guard(source.make_guard(GuardBuilder.BUILTIN_MATCH))
- return BuiltinVariable(value, source=source)
- @staticmethod
- @functools.lru_cache(None)
- def _constant_fold_functions():
- fns = {
- abs,
- all,
- any,
- bool,
- callable,
- chr,
- divmod,
- float,
- getattr,
- int,
- len,
- max,
- min,
- ord,
- pow,
- repr,
- round,
- str,
- str.format,
- sum,
- type,
- operator.abs,
- operator.pos,
- operator.neg,
- operator.not_,
- operator.truth,
- operator.invert,
- operator.pow,
- operator.mul,
- operator.matmul,
- operator.floordiv,
- operator.truediv,
- operator.mod,
- operator.add,
- operator.sub,
- operator.getitem,
- operator.length_hint,
- operator.lshift,
- operator.rshift,
- operator.and_,
- operator.or_,
- operator.xor,
- operator.ipow,
- operator.imul,
- operator.imatmul,
- operator.ifloordiv,
- operator.itruediv,
- operator.imod,
- operator.iadd,
- operator.isub,
- operator.ilshift,
- operator.irshift,
- operator.iand,
- operator.ixor,
- operator.ior,
- operator.index,
- }
- from .tensor import supported_comparison_ops
- fns.update(supported_comparison_ops.values())
- fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
- return fns
- def can_constant_fold_through(self):
- return self.fn in self._constant_fold_functions()
- @staticmethod
- @functools.lru_cache(None)
- def _fx_graph_functions():
- fns = {
- operator.abs,
- operator.pos,
- operator.neg,
- operator.not_,
- operator.invert,
- operator.pow,
- operator.mul,
- operator.matmul,
- operator.floordiv,
- operator.truediv,
- operator.mod,
- operator.add,
- operator.lt,
- operator.gt,
- operator.ge,
- operator.le,
- operator.ne,
- operator.eq,
- operator.sub,
- operator.getitem,
- operator.length_hint,
- operator.lshift,
- operator.rshift,
- operator.and_,
- operator.or_,
- operator.xor,
- operator.ipow,
- operator.imul,
- operator.imatmul,
- operator.ifloordiv,
- operator.itruediv,
- operator.imod,
- operator.iadd,
- operator.isub,
- operator.ilshift,
- operator.irshift,
- operator.iand,
- operator.ixor,
- operator.ior,
- }
- return fns
- @staticmethod
- @functools.lru_cache(None)
- def _binops():
- # function -> ([forward name, reverse name, in-place name], in-place op)
- fns = {
- operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
- operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
- operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
- operator.truediv: (
- ["__truediv__", "__rtruediv__", "__itruediv__"],
- operator.itruediv,
- ),
- operator.floordiv: (
- ["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
- operator.ifloordiv,
- ),
- operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
- pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
- operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
- operator.lshift: (
- ["__lshift__", "__rlshift__", "__ilshift__"],
- operator.ilshift,
- ),
- operator.rshift: (
- ["__rshift__", "__rrshift__", "__irshift__"],
- operator.irshift,
- ),
- # NB: The follow binary operators are not supported for now, since the
- # corresponding magic methods aren't defined on SymInt / SymFloat:
- # operator.matmul
- # divmod
- # operator.and_
- # operator.or_
- # operator.xor
- }
- return fns
- @staticmethod
- @functools.lru_cache(None)
- def _binop_handlers():
- # Multiple dispatch mechanism defining custom binop behavior for certain type
- # combinations. Handlers are attempted in order, and will be used if the type checks
- # match. They are expected to have the signature:
- # fn(tx, arg0: VariableTracker, arg1: VariableTracker) -> VariableTracker
- from .dicts import DictKeys, SetVariable
- from .functions import BaseUserFunctionVariable, UserFunctionVariable
- from .nn_module import NNModuleVariable
- from .tensor import supported_const_comparison_ops
- from .torch import BaseTorchVariable
- from .user_defined import (
- UserDefinedClassVariable,
- UserDefinedObjectVariable,
- UserDefinedVariable,
- )
- # Override table contains: op_fn -> [list of handlers]
- op_handlers = {}
- for (
- op,
- (magic_method_names, in_place_op),
- ) in BuiltinVariable._binops().items():
- op_handlers[op] = []
- op_handlers[in_place_op] = []
- forward_name, reverse_name, inplace_name = magic_method_names
- # User-defined args (highest precedence)
- def user_defined_handler(
- tx,
- a,
- b,
- *,
- forward_name=forward_name,
- reverse_name=reverse_name,
- ):
- # Manually handle reversing logic if needed (e.g. call __radd__)
- # TODO: If we expand this to handle tensor args, we need to manually
- # handle cases like this:
- #
- # class A(int):
- # def __radd__(self, other):
- # print("woof")
- # torch.randn(3) + A(3)
- #
- # In this example, A.__radd__() is not called -> nothing is printed, because
- # Tensor.__add__ only does a subtype test against int, ignoring the subclass.
- # To be fully correct, we should not call A.__radd__() here, and there may be
- # other cases to reason about and add exceptions for.
- if isinstance(a, UserDefinedVariable):
- return a.call_method(tx, forward_name, [b], {})
- else:
- return b.call_method(tx, reverse_name, [a], {})
- op_handlers[op].append(
- ((UserDefinedVariable, VariableTracker), user_defined_handler)
- )
- op_handlers[op].append(
- ((VariableTracker, UserDefinedVariable), user_defined_handler)
- )
- def user_defined_inplace_handler(tx, a, b, *, forward_name=inplace_name):
- return a.call_method(tx, forward_name, [b], {})
- op_handlers[in_place_op].append(
- ((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
- )
- op_handlers[in_place_op].append(
- ((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
- )
- # Dynamic shape args
- def dynamic_handler(tx, a, b, *, fn=op):
- from .builder import wrap_fx_proxy
- return wrap_fx_proxy(
- tx,
- tx.output.create_proxy(
- "call_function", fn, *proxy_args_kwargs([a, b], {})
- ),
- )
- op_handlers[op].append(
- ((SymNodeVariable, VariableTracker), dynamic_handler)
- )
- op_handlers[op].append(
- ((VariableTracker, SymNodeVariable), dynamic_handler)
- )
- # NB: Prefer out-of-place op when calling in-place op to generate valid graph
- op_handlers[in_place_op].append(
- ((SymNodeVariable, VariableTracker), dynamic_handler)
- )
- op_handlers[in_place_op].append(
- ((VariableTracker, SymNodeVariable), dynamic_handler)
- )
- # Special cases - lower precedence but still prefer these over constant folding
- # List-like addition (e.g. [1, 2] + [3, 4])
- def tuple_add_handler(tx, a, b):
- return TupleVariable([*a.items, *b.unpack_var_sequence(tx)])
- def size_add_handler(tx, a, b):
- return SizeVariable([*a.items, *b.unpack_var_sequence(tx)])
- list_like_addition_handlers = [
- # NB: Prefer the tuple-specific logic over base logic because of
- # some SizeVariable weirdness. Specifically, the tuple-specific logic
- # drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
- (
- (SizeVariable, SizeVariable),
- size_add_handler,
- ),
- (
- (TupleVariable, TupleVariable),
- tuple_add_handler,
- ),
- (
- (TupleVariable, ConstantVariable),
- tuple_add_handler,
- ),
- (
- (ConstantVariable, TupleVariable),
- lambda tx, a, b: TupleVariable(
- [*a.unpack_var_sequence(tx), *b.items],
- ),
- ),
- (
- (
- ListVariable,
- (BaseListVariable, ConstantVariable, ListIteratorVariable),
- ),
- lambda tx, a, b: ListVariable(
- [*a.items, *b.unpack_var_sequence(tx)], mutable_local=MutableLocal()
- ),
- ),
- (
- (BaseListVariable, BaseListVariable),
- lambda tx, a, b: type(a)([*a.items, *b.items]),
- ),
- ]
- op_handlers[operator.add].extend(list_like_addition_handlers)
- def list_iadd_handler(tx, a, b):
- if not a.mutable_local or not b.has_unpack_var_sequence(tx):
- # Handler doesn't apply
- return None
- seq = b.unpack_var_sequence(tx)
- tx.output.side_effects.mutation(a)
- a.items.extend(seq)
- return a
- list_like_iadd_handlers = [
- (
- (ListVariable, VariableTracker),
- list_iadd_handler,
- ),
- (
- (TupleVariable, TupleVariable),
- tuple_add_handler,
- ),
- (
- (TupleVariable, ConstantVariable),
- tuple_add_handler,
- ),
- ]
- op_handlers[operator.iadd].extend(list_like_iadd_handlers)
- # List-like expansion (e.g. [1, 2, 3] * 3)
- def expand_list_like(tx, lst, const):
- if isinstance(lst, ConstantVariable):
- lst, const = const, lst
- return lst.__class__(
- items=lst.items * const.as_python_constant(),
- mutable_local=MutableLocal(),
- )
- list_like_expansion_handlers = [
- ((ListVariable, ConstantVariable), expand_list_like),
- ((TupleVariable, ConstantVariable), expand_list_like),
- ((ConstantVariable, ListVariable), expand_list_like),
- ((ConstantVariable, TupleVariable), expand_list_like),
- ]
- op_handlers[operator.mul].extend(list_like_expansion_handlers)
- size_or_tuple = (SizeVariable, TupleVariable)
- has_set_items = (SetVariable, DictKeys)
- def create_cmp_op_handlers(op):
- def compare_by_value(tx, a, b):
- return ConstantVariable(op(a.value, b.value))
- result = [((ConstantVariable, ConstantVariable), compare_by_value)]
- if op in supported_const_comparison_ops.values():
- # Tensor is None, List is not None, etc
- none_result = op(object(), None)
- if op.__name__.startswith("is_"):
- def never(tx, a, b):
- return ConstantVariable(none_result)
- obj_op_none = never
- none_op_obj = never
- else:
- def obj_op_none(tx, a, b: ConstantVariable):
- if b.value is None or b.value is True or b.value is False:
- return ConstantVariable(none_result)
- def none_op_obj(tx, a: ConstantVariable, b):
- if a.value is None or a.value is True or a.value is False:
- return ConstantVariable(none_result)
- types_that_are_never_none = (
- TensorVariable,
- SymNodeVariable,
- NNModuleVariable,
- BaseListVariable,
- UserDefinedVariable,
- BaseUserFunctionVariable,
- ConstDictVariable,
- BaseTorchVariable,
- )
- result.extend(
- [
- (
- (types_that_are_never_none, ConstantVariable),
- obj_op_none,
- ),
- (
- (ConstantVariable, types_that_are_never_none),
- none_op_obj,
- ),
- ]
- )
- def list_compare_nocheck(tx, left, right):
- return BaseListVariable.list_compare(tx, op, left, right)
- def list_compare_check(tx, left, right):
- if type(left) is not type(
- right
- ): # Mismatch in BaseListVariable subclasses
- unimplemented(f"{op.__name__}({left}, {right})")
- return BaseListVariable.list_compare(tx, op, left, right)
- def compare_set_items(tx, left, right):
- return ConstantVariable(op(left.set_items, right.set_items))
- def compare_via_method(tx, left, right):
- return left.call_method(tx, f"__{op.__name__}__", [right], {})
- if op.__name__.startswith("is_"):
- compare_user_defined = compare_by_value
- else:
- compare_user_defined = compare_via_method
- op_var = BuiltinVariable(op)
- result.extend(
- [
- (
- (
- (UserFunctionVariable, BuiltinVariable),
- (UserFunctionVariable, BuiltinVariable),
- ),
- lambda tx, a, b: ConstantVariable(op(a.fn, b.fn)),
- ),
- (
- (
- NNModuleVariable,
- NNModuleVariable,
- ),
- lambda tx, a, b: ConstantVariable(
- op(
- tx.output.get_submodule(a.module_key),
- tx.output.get_submodule(b.module_key),
- )
- ),
- ),
- ((size_or_tuple, size_or_tuple), list_compare_nocheck),
- (
- (variables.BaseListVariable, variables.BaseListVariable),
- list_compare_check,
- ),
- ((has_set_items, has_set_items), compare_set_items),
- (
- (UserDefinedObjectVariable, UserDefinedObjectVariable),
- compare_user_defined,
- ),
- (
- (UserDefinedClassVariable, UserDefinedClassVariable),
- compare_user_defined,
- ),
- (
- (
- (StreamVariable, EventVariable, ConstantVariable),
- (StreamVariable, EventVariable, ConstantVariable),
- ),
- compare_by_value,
- ),
- (
- (TensorVariable, VariableTracker),
- op_var._comparison_with_tensor,
- ),
- (
- (VariableTracker, TensorVariable),
- op_var._comparison_with_tensor,
- ),
- (
- (SymNodeVariable, VariableTracker),
- op_var._comparison_with_symnode,
- ),
- (
- (VariableTracker, SymNodeVariable),
- op_var._comparison_with_symnode,
- ),
- ]
- )
- if op.__name__.startswith("is_"):
- def handle_is(tx, left, right):
- # If the two objects are of different type, we can safely return False
- # and True for `is` and `is not`, respectively
- if type(left) is not type(right):
- return ConstantVariable.create(op.__name__ != "is_")
- result.append(((VariableTracker, VariableTracker), handle_is))
- return result
- for op in supported_comparison_ops.values():
- assert callable(op)
- assert op not in op_handlers
- op_handlers[op] = create_cmp_op_handlers(op)
- return op_handlers
- @staticmethod
- def _find_binop_handler(op, a_type, b_type):
- handlers = BuiltinVariable._binop_handlers().get(op)
- if handlers is None:
- return None
- matches = []
- for (type1, type2), handler in handlers:
- if issubclass(a_type, type1) and issubclass(b_type, type2):
- matches.append(handler)
- return matches
- def can_insert_in_graph(self):
- return self.fn in self._fx_graph_functions()
- def __init__(self, fn, **kwargs):
- super().__init__(**kwargs)
- self.fn = fn
- def __str__(self):
- if self.fn is None:
- name = "None"
- else:
- name = self.fn.__name__
- return f"{self.__class__.__name__}({name})"
- def python_type(self):
- return type(self.fn)
- def as_python_constant(self):
- return self.fn
- def as_proxy(self):
- DTYPE = {
- bool: torch.bool,
- int: torch.int64,
- float: torch.float64,
- }
- if self.fn in DTYPE:
- return DTYPE[self.fn]
- return super().as_proxy()
- def reconstruct(self, codegen):
- name = self.fn.__name__
- assert self.fn.__module__ == "builtins"
- assert name not in codegen.tx.f_globals, "shadowed global"
- codegen.append_output(codegen.create_load_global(name, False, add=True))
- def constant_args(self, *args, **kwargs):
- return check_constant_args(args, kwargs)
- def tensor_args(self, *args):
- any_tensor = False
- for arg in args:
- if isinstance(arg, variables.GetAttrVariable):
- return False
- any_tensor = any_tensor or isinstance(arg, variables.TensorVariable)
- return any_tensor
- def tensor_args_type(self, arg_types):
- any_tensor = False
- for arg_type in arg_types:
- if issubclass(arg_type, variables.GetAttrVariable):
- return False
- any_tensor = any_tensor or issubclass(arg_type, variables.TensorVariable)
- return any_tensor
- def python_and_tensor_constant_only(self, *args, **kwargs):
- tensor_args = []
- non_tensor_args = []
- for i in itertools.chain(args, kwargs.values()):
- if isinstance(i, variables.TensorVariable):
- tensor_args.append(i)
- else:
- non_tensor_args.append(i)
- return all(
- is_constant_source(t.source) if t.source is not None else False
- for t in tensor_args
- ) and self.constant_args(*non_tensor_args)
- @staticmethod
- def unwrap_unspec_args_kwargs(args, kwargs):
- return [x.as_python_constant() for x in args], {
- k: v.as_python_constant() for k, v in kwargs.items()
- }
- def has_constant_handler(self, args, kwargs):
- return self.can_constant_fold_through() and check_unspec_or_constant_args(
- args, kwargs
- )
- @staticmethod
- def _make_handler(fn, arg_types: List[type], has_kwargs: bool):
- from .builder import SourcelessBuilder
- from .lazy import LazyVariableTracker
- obj = BuiltinVariable(fn)
- handlers = []
- if any(issubclass(t, LazyVariableTracker) for t in arg_types):
- return lambda tx, args, kwargs: obj.call_function(
- tx, [v.realize() for v in args], kwargs
- )
- if inspect.isclass(fn) and issubclass(fn, Exception):
- def create_exception_class_object(tx, args, kwargs):
- if fn is AssertionError and not all(
- isinstance(x, variables.ConstantVariable)
- and isinstance(x.value, str)
- for x in args
- ):
- unimplemented("assert with non-string message")
- return variables.ExceptionVariable(fn, args, **kwargs)
- return create_exception_class_object
- if obj.can_insert_in_graph() and not (
- fn is operator.getitem
- and not issubclass(arg_types[0], variables.TensorVariable)
- ):
- if obj.tensor_args_type(arg_types):
- return obj._handle_insert_op_in_graph
- elif has_kwargs:
- # need runtime check for kwargs
- handlers.append(obj._handle_insert_op_in_graph)
- # Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
- # NB: Tensor args are handled above and not here
- if len(arg_types) == 2 and not has_kwargs:
- # Try to find a handler for the arg types; otherwise, fall through to constant handler
- binop_handlers = BuiltinVariable._find_binop_handler(fn, *arg_types)
- if not binop_handlers:
- pass
- elif len(binop_handlers) == 1:
- (binop_handler,) = binop_handlers
- handlers.append(lambda tx, args, _: binop_handler(tx, *args))
- else:
- def call_binop_handlers(tx, args, _):
- for fn in binop_handlers:
- rv = fn(tx, *args)
- if rv:
- return rv
- handlers.append(call_binop_handlers)
- self_handler = getattr(obj, f"call_{fn.__name__}", None)
- if self_handler:
- def call_self_handler(tx, args, kwargs):
- try:
- result = self_handler(tx, *args, **kwargs)
- if result is not None:
- return result
- except TypeError:
- # Check if binding is bad. inspect signature bind is expensive.
- # So check only when handler call fails.
- try:
- inspect.signature(self_handler).bind(tx, *args, **kwargs)
- except TypeError as e:
- has_constant_handler = obj.has_constant_handler(args, kwargs)
- if not has_constant_handler:
- log.warning(
- "incorrect arg count %s %s and no constant handler",
- self_handler,
- e,
- )
- unimplemented(
- f"invalid handler args {self_handler} {args} {kwargs}"
- )
- else:
- raise
- except Unsupported as exc:
- has_constant_handler = obj.has_constant_handler(args, kwargs)
- if not has_constant_handler:
- raise
- # Actually, we will handle this just fine
- exc.remove_from_stats()
- handlers.append(call_self_handler)
- if obj.can_constant_fold_through():
- builder = SourcelessBuilder.create
- if (
- all(issubclass(x, ConstantVariable) for x in arg_types)
- and not has_kwargs
- ):
- def constant_fold_handler(tx, args, kwargs):
- # fast path
- try:
- res = fn(
- *[x.as_python_constant() for x in args],
- )
- except Exception as exc:
- unimplemented(f"constant fold exception: {repr(exc)}")
- return builder(tx, res)
- else:
- def constant_fold_handler(tx, args, kwargs):
- # path with a runtime check
- if check_unspec_or_constant_args(args, kwargs):
- try:
- res = fn(
- *[x.as_python_constant() for x in args],
- **{
- k: v.as_python_constant() for k, v in kwargs.items()
- },
- )
- except Exception as exc:
- unimplemented(f"constant fold exception: {repr(exc)}")
- return builder(tx, res)
- handlers.append(constant_fold_handler)
- error_msg = f"builtin: {fn.__name__} {arg_types} {has_kwargs}"
- if len(handlers) == 0:
- return lambda *args: unimplemented(error_msg)
- elif len(handlers) == 1:
- (handler,) = handlers
- def builtin_dipatch(tx, args, kwargs):
- rv = handler(tx, args, kwargs)
- if rv:
- return rv
- unimplemented(error_msg)
- else:
- def builtin_dipatch(tx, args, kwargs):
- for fn in handlers:
- rv = fn(tx, args, kwargs)
- if rv:
- return rv
- unimplemented(error_msg)
- return builtin_dipatch
- def _handle_insert_op_in_graph(self, tx, args, kwargs):
- from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
- if kwargs and not self.tensor_args(*args, *kwargs.values()):
- return
- fn = self.fn
- try:
- # Constant fold for constant tensor and python constants
- if self.python_and_tensor_constant_only(*args, **kwargs):
- from ..bytecode_transformation import unique_id
- from .functions import invoke_and_store_as_constant
- return invoke_and_store_as_constant(
- tx, fn, unique_id(fn.__name__), args, kwargs
- )
- if fn in IN_PLACE_DESUGARING_MAP and isinstance(
- args[0], variables.ConstantVariable
- ):
- # In-place operators like += usually mustate tensor
- # values, but in the edge case of immutable values they
- # re-bind the variable.
- #
- # The easiest way to keep the graph consistent in this
- # scenario is to de-sugar eagerly.
- fn, args = IN_PLACE_DESUGARING_MAP[fn], [args[0], args[1]]
- if fn is operator.getitem and isinstance(args[1], SymNodeVariable):
- # Standard indexing will force specialization due to
- # __index__. Rewrite as a regular torch op which will
- # trace fine
- fn, args = torch.select, [
- args[0],
- variables.ConstantVariable.create(0),
- args[1],
- ]
- # Interaction between ndarray and tensors:
- # We prefer the tensor op whenever there are tensors involved
- if check_numpy_ndarray_args(args, kwargs) and not any(
- type(arg) == variables.TensorVariable for arg in args
- ):
- proxy = tx.output.create_proxy(
- "call_function",
- numpy_operator_wrapper(fn),
- *proxy_args_kwargs(args, kwargs),
- )
- return wrap_fx_proxy_cls(variables.NumpyNdarrayVariable, tx, proxy)
- proxy = tx.output.create_proxy(
- "call_function",
- fn,
- *proxy_args_kwargs(args, kwargs),
- )
- if any(isinstance(arg, FakeItemVariable) for arg in args):
- return wrap_fx_proxy_cls(
- FakeItemVariable,
- tx,
- proxy,
- )
- elif check_unspec_python_args(args, kwargs):
- _args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
- raw_value = fn(*_args, **_kwargs)
- need_unwrap = any(
- x.need_unwrap
- for x in itertools.chain(args, kwargs.values())
- if isinstance(x, variables.UnspecializedPythonVariable)
- )
- return wrap_fx_proxy_cls(
- UnspecializedPythonVariable,
- tx,
- proxy,
- raw_value=raw_value,
- need_unwrap=need_unwrap,
- )
- elif all(isinstance(x, SymNodeVariable) for x in args):
- return SymNodeVariable.create(tx, proxy, None)
- else:
- # Work around for vision_maskrcnn due to precision difference
- # specialize the dividend when float divide by tensor
- if fn is operator.truediv and isinstance(
- args[0], variables.UnspecializedPythonVariable
- ):
- args[0] = args[0].convert_to_constant(tx)
- return wrap_fx_proxy(tx, proxy)
- except NotImplementedError:
- unimplemented(f"partial tensor op: {self} {args} {kwargs}")
- call_function_handler_cache = {}
- def call_function(
- self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
- ) -> "VariableTracker":
- if kwargs:
- kwargs = {k: v.realize() for k, v in kwargs.items()}
- key = (self.fn, *(type(x) for x in args), True)
- else:
- key = (self.fn, *(type(x) for x in args))
- handler = self.call_function_handler_cache.get(key)
- if not handler:
- self.call_function_handler_cache[key] = handler = self._make_handler(
- self.fn, [type(x) for x in args], bool(kwargs)
- )
- return handler(tx, args, kwargs)
- def call_method(
- self,
- tx,
- name,
- args: "List[VariableTracker]",
- kwargs: "Dict[str, VariableTracker]",
- ) -> "VariableTracker":
- if self.fn == object and name == "__setattr__":
- assert len(args) == 3
- assert len(kwargs) == 0
- obj, name_var, val = args
- obj = obj.realize()
- if (
- isinstance(obj, UserDefinedObjectVariable)
- and tx.output.side_effects.is_attribute_mutation(obj)
- and name_var.is_python_constant()
- ):
- return obj.method_setattr_standard(tx, name_var, val)
- if self.fn == dict and name == "fromkeys":
- return BuiltinVariable.call_custom_dict_fromkeys(tx, dict, *args, **kwargs)
- if self.fn == itertools.chain and name == "from_iterable":
- assert len(args) == 1
- assert len(kwargs) == 0
- obj = args[0]
- items = []
- for item in obj.unpack_var_sequence(tx):
- items.extend(item.unpack_var_sequence(tx))
- return variables.TupleVariable(items)
- return super().call_method(tx, name, args, kwargs)
- def _call_int_float(self, tx, arg):
- # Handle cases like int(torch.seed())
- # Also handle sym_float to sym_int cases
- if isinstance(arg, (SymNodeVariable, variables.TensorVariable)):
- if isinstance(arg, variables.TensorVariable):
- item = arg.call_method(tx, "item", [], {})
- else:
- item = arg
- fn_ = sym_int if self.fn is int else sym_float
- from torch._dynamo.variables.builder import wrap_fx_proxy
- return wrap_fx_proxy(
- tx=tx,
- proxy=tx.output.create_proxy(
- "call_function",
- fn_,
- (item.as_proxy(),),
- {},
- ),
- )
- call_int = _call_int_float
- call_float = _call_int_float
- def call_str(self, tx, arg):
- # Handle `str` on a user defined function
- if isinstance(arg, (variables.UserFunctionVariable)):
- return variables.ConstantVariable.create(value=str(arg.fn))
- def _call_min_max(self, tx, *args):
- if len(args) == 1 and args[0].has_unpack_var_sequence(tx):
- # expand iterable
- items = args[0].unpack_var_sequence(tx)
- return self._call_min_max_seq(tx, items)
- elif len(args) == 2:
- return self._call_min_max_binary(tx, args[0], args[1])
- elif len(args) > 2:
- return self._call_min_max_seq(tx, args)
- def _call_min_max_seq(self, tx, items):
- assert len(items) > 0
- if len(items) == 1:
- return items[0]
- return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)
- def _call_min_max_binary(self, tx, a, b):
- if self.tensor_args(a, b):
- if not isinstance(a, variables.TensorVariable):
- a, b = b, a
- assert isinstance(a, variables.TensorVariable)
- # result of an item call is a scalar convert to a tensor
- if isinstance(a, FakeItemVariable):
- a = variables.TorchInGraphFunctionVariable(torch.tensor).call_function(
- tx, [a], {}
- )
- # Dynamic input does not get resolved, rather, gets stored as call_function
- if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
- from .builder import wrap_fx_proxy_cls
- return wrap_fx_proxy_cls(
- type(a),
- tx=tx,
- proxy=tx.output.create_proxy(
- "call_function",
- self.fn,
- *proxy_args_kwargs([a, b], {}),
- ),
- )
- # convert min/max to torch ops
- if b.is_python_constant():
- if isinstance(a, variables.NumpyNdarrayVariable):
- import numpy as np
- fn = variables.NumpyVariable(np.clip)
- else:
- fn = variables.TorchInGraphFunctionVariable(torch.clamp)
- kwargs = {"min": b} if (self.fn is max) else {"max": b}
- result = fn.call_function(tx, [a], kwargs)
- else:
- if isinstance(a, variables.NumpyNdarrayVariable):
- import numpy as np
- fn = {max: np.maximum, min: np.minimum}[self.fn]
- fn = variables.NumpyVariable(fn)
- else:
- fn = {max: torch.maximum, min: torch.minimum}[self.fn]
- fn = variables.TorchInGraphFunctionVariable(fn)
- result = fn.call_function(tx, [a, b], {})
- # return unspec if both a, b are unspec or const
- if all(
- isinstance(
- i,
- (
- variables.UnspecializedPythonVariable,
- variables.ConstantVariable,
- ),
- )
- for i in [a, b]
- ):
- if any(isinstance(val, FakeItemVariable) for val in [a, b]):
- return variables.FakeItemVariable.from_tensor_variable(result)
- if b.is_python_constant():
- raw_b = b.as_python_constant()
- else:
- raw_b = b.raw_value
- if self.fn is max:
- raw_res = max(a.raw_value, raw_b)
- else:
- raw_res = min(a.raw_value, raw_b)
- need_unwrap = any(
- x.need_unwrap
- for x in [a, b]
- if isinstance(x, variables.UnspecializedPythonVariable)
- )
- return variables.UnspecializedPythonVariable.from_tensor_variable(
- result, raw_res, need_unwrap
- )
- # otherwise return tensor
- else:
- return result
- elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
- fn = torch.sym_max if self.fn is max else torch.sym_min
- proxy = tx.output.create_proxy(
- "call_function", fn, *proxy_args_kwargs([a, b], {})
- )
- return SymNodeVariable.create(tx, proxy, None)
- call_min = _call_min_max
- call_max = _call_min_max
- def call_abs(self, tx, arg: "VariableTracker"):
- # Call arg.__abs__()
- abs_method = BuiltinVariable(getattr).call_function(
- tx, [arg, ConstantVariable.create("__abs__")], {}
- )
- return abs_method.call_function(tx, [], {})
- def call_pos(self, tx, arg: "VariableTracker"):
- # Call arg.__pos__()
- pos_method = BuiltinVariable(getattr).call_function(
- tx, [arg, ConstantVariable.create("__pos__")], {}
- )
- return pos_method.call_function(tx, [], {})
- def call_index(self, tx, arg: "VariableTracker"):
- if isinstance(arg, variables.TensorVariable):
- unimplemented("unsupported index(tensor)")
- arg = guard_if_dyn(arg)
- constant_value = operator.index(arg)
- return variables.ConstantVariable.create(constant_value)
- def call_round(self, tx, arg, *args, **kwargs):
- # Call arg.__round__()
- round_method = BuiltinVariable(getattr).call_function(
- tx, [arg, ConstantVariable.create("__round__")], {}
- )
- return round_method.call_function(tx, args, kwargs)
- def call_range(self, tx, *args):
- if check_unspec_or_constant_args(args, {}):
- return variables.RangeVariable(args)
- elif self._dynamic_args(*args):
- args = [
- variables.ConstantVariable.create(guard_if_dyn(arg)) for arg in args
- ]
- return variables.RangeVariable(args)
- # None no-ops this handler and lets the driving function proceed
- return None
- def _dynamic_args(self, *args, **kwargs):
- return any(isinstance(x, SymNodeVariable) for x in args) or any(
- isinstance(x, SymNodeVariable) for x in kwargs.values()
- )
- def call_slice(self, tx, *args):
- return variables.SliceVariable(args)
- def _dyn_proxy(self, tx, *args, **kwargs):
- from .builder import wrap_fx_proxy
- return wrap_fx_proxy(
- tx,
- tx.output.create_proxy(
- "call_function", self.fn, *proxy_args_kwargs(args, kwargs)
- ),
- )
- def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
- if self._dynamic_args(*args, **kwargs):
- return self._dyn_proxy(tx, *args, **kwargs)
- if isinstance(obj, variables.IteratorVariable):
- # For non-list iterators, we will guard on vars that
- # determine the control flow
- return obj
- cls = variables.BaseListVariable.cls_for(self.fn)
- if obj is None:
- return cls(
- [],
- mutable_local=MutableLocal(),
- )
- elif obj.has_unpack_var_sequence(tx):
- if obj.source and not is_constant_source(obj.source):
- if isinstance(obj, TupleIteratorVariable):
- install_guard(
- obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)
- )
- else:
- if (
- getattr(obj, "source", False)
- and isinstance(obj, ConstDictVariable)
- and not istype(obj, SetVariable)
- ):
- tx.output.guard_on_key_order.add(obj.source.name())
- install_guard(obj.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
- return cls(
- list(obj.unpack_var_sequence(tx)),
- mutable_local=MutableLocal(),
- )
- def call_iter(self, tx, obj, *args, **kwargs):
- # Handle the case where we are iterating over a tuple, list or iterator
- ret = self._call_iter_tuple_list(tx, obj, *args, **kwargs)
- if ret is None:
- # If the object doesn't implement a __iter__ method, it will be an error in eager mode when calling iter on it anyway.
- # If the object implements a __iter__ method, inlining effectively forwards the call to another iter call
- # (e.g. when __iter__ just returns iter(self.list)) or return a user-defined iterator.
- return obj.call_method(tx, "__iter__", args, kwargs)
- return ret
- call_tuple = _call_iter_tuple_list
- call_list = _call_iter_tuple_list
- def call_callable(self, tx, arg):
- from .functions import BaseUserFunctionVariable
- from .nn_module import NNModuleVariable
- if isinstance(
- arg,
- (
- variables.UserDefinedClassVariable,
- BaseUserFunctionVariable,
- NNModuleVariable,
- ),
- ):
- return variables.ConstantVariable.create(True)
- elif isinstance(arg, UserDefinedVariable):
- return variables.ConstantVariable.create(callable(arg.value))
- elif isinstance(arg, (ConstantVariable, SymNodeVariable, TensorVariable)):
- return variables.ConstantVariable.create(False)
- def call_cast(self, _, *args, **kwargs):
- if len(args) == 2:
- return args[1]
- unimplemented(f"unsupported args to builtin cast(): {args} {kwargs}")
- def call_dict(self, tx, *args, **kwargs):
- return BuiltinVariable.call_custom_dict(tx, dict, *args, **kwargs)
- @staticmethod
- def call_custom_dict(tx, user_cls, *args, **kwargs):
- if not kwargs:
- if not args:
- args = ({},)
- assert len(args) == 1
- arg = args[0]
- if isinstance(arg, dict):
- return ConstDictVariable(arg, user_cls, mutable_local=MutableLocal())
- elif isinstance(arg, variables.ConstDictVariable):
- return arg.clone(user_cls=user_cls, mutable_local=MutableLocal())
- elif isinstance(
- arg,
- (
- ListVariable,
- TupleVariable,
- ListIteratorVariable,
- ),
- ):
- items = dict(
- x.unpack_var_sequence(tx) for x in arg.unpack_var_sequence(tx)
- )
- return ConstDictVariable(items, user_cls, mutable_local=MutableLocal())
- elif not args and kwargs:
- items = {ConstantVariable.create(k): v for k, v in kwargs.items()}
- return variables.ConstDictVariable(
- items, user_cls=user_cls, mutable_local=MutableLocal()
- )
- unimplemented(f"{user_cls.__name__}(): {args} {kwargs}")
- @staticmethod
- def call_custom_dict_fromkeys(tx, user_cls, *args, **kwargs):
- assert user_cls in {dict, OrderedDict, defaultdict}
- if kwargs:
- # Only `OrderedDict.fromkeys` accepts `value` passed by keyword
- assert user_cls is OrderedDict
- assert len(args) == 1 and len(kwargs) == 1 and "value" in kwargs
- args = (*args, kwargs.pop("value"))
- if len(args) == 0:
- raise UserError(TypeError, "fromkeys expected at least 1 argument, got 0")
- if len(args) == 1:
- args = (*args, ConstantVariable.create(None))
- assert len(args) == 2
- arg, value = args
- DictVariableType = (
- ConstDictVariable if user_cls is not defaultdict else DefaultDictVariable
- )
- if isinstance(arg, dict):
- arg = [ConstantVariable.create(k) for k in arg.keys()]
- return DictVariableType(
- dict.fromkeys(arg, value), user_cls, mutable_local=MutableLocal()
- )
- elif arg.has_unpack_var_sequence(tx) and all(
- is_hashable(v) for v in arg.unpack_var_sequence(tx)
- ):
- keys = arg.unpack_var_sequence(tx)
- return DictVariableType(
- dict.fromkeys(keys, value), user_cls, mutable_local=MutableLocal()
- )
- unimplemented(f"{user_cls.__name__}.fromkeys(): {args} {kwargs}")
- def call_set(self, tx, *args, **kwargs):
- # Can we merge this implementation and call_dict's one?
- assert not kwargs
- if not args:
- return SetVariable([], mutable_local=MutableLocal())
- assert len(args) == 1
- arg = args[0]
- if isinstance(arg, variables.SetVariable):
- return arg.clone(mutable_local=MutableLocal())
- elif arg.has_unpack_var_sequence(tx):
- items = arg.unpack_var_sequence(tx)
- return SetVariable(items, mutable_local=MutableLocal())
- else:
- unimplemented(f"set(): {args} {kwargs}")
- def call_zip(self, tx, *args, **kwargs):
- if kwargs:
- assert len(kwargs) == 1 and "strict" in kwargs
- if all(x.has_unpack_var_sequence(tx) for x in args):
- unpacked = [arg.unpack_var_sequence(tx) for arg in args]
- if kwargs.pop("strict", False) and len(unpacked) > 0:
- if not all(len(u) == len(unpacked[0]) for u in unpacked):
- raise UserError(
- ValueError,
- "zip() has one argument of len differing from others",
- )
- items = [variables.TupleVariable(list(item)) for item in zip(*unpacked)]
- return variables.TupleVariable(items)
- def call_enumerate(self, tx, *args):
- if len(args) == 1:
- start = 0
- else:
- assert len(args) == 2
- assert isinstance(args[1], variables.ConstantVariable)
- start = args[1].as_python_constant()
- if args[0].has_unpack_var_sequence(tx):
- items = [
- variables.TupleVariable(
- [variables.ConstantVariable.create(idx), var],
- )
- for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
- ]
- return variables.TupleVariable(items)
- def call_len(self, tx, *args, **kwargs):
- return args[0].call_method(tx, "__len__", args[1:], kwargs)
- def call_getitem(self, tx, *args, **kwargs):
- return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
- def call_isinstance(self, tx, arg, isinstance_type):
- try:
- arg_type = arg.python_type()
- except NotImplementedError:
- unimplemented(
- f"isinstance({arg}, {isinstance_type}): can't determine type of {arg}"
- )
- isinstance_type = isinstance_type.as_python_constant()
- if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
- def _tensor_isinstance(tensor_var, tensor_type):
- def check_type(ty):
- if ty not in tensortype_to_dtype:
- return issubclass(arg.python_type(), ty)
- dtypes = tensortype_to_dtype[ty]
- return arg.dtype in dtypes
- if type(tensor_type) is tuple:
- return any(check_type(ty) for ty in tensor_type)
- else:
- return check_type(tensor_type)
- return variables.ConstantVariable.create(
- _tensor_isinstance(arg, isinstance_type)
- )
- # UserDefinedObject with C extensions can have torch.Tensor attributes,
- # so break graph.
- if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
- arg.value, types.MemberDescriptorType
- ):
- unimplemented(
- f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
- )
- # handle __instancecheck__ defined in user class
- if (
- isinstance(arg, variables.UserDefinedObjectVariable)
- and "__instancecheck__" in isinstance_type.__class__.__dict__
- ):
- return variables.ConstantVariable.create(
- isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
- )
- try:
- val = issubclass(arg_type, isinstance_type)
- except TypeError:
- val = arg_type is isinstance_type
- return variables.ConstantVariable.create(val)
- def call_issubclass(self, tx, left_ty, right_ty):
- """Checks if first arg is subclass of right arg"""
- try:
- left_ty_py = left_ty.as_python_constant()
- right_ty_py = right_ty.as_python_constant()
- except NotImplementedError:
- unimplemented(
- f"call_issubclass args not constant left_ty: {left_ty}, right_ty: {right_ty}"
- )
- return variables.ConstantVariable(issubclass(left_ty_py, right_ty_py))
- def call_super(self, tx, a, b):
- return variables.SuperVariable(a, b)
- def call_next(self, tx, arg: VariableTracker):
- try:
- return arg.next_variable(tx)
- except Unsupported as ex:
- if isinstance(arg, variables.BaseListVariable):
- ex.remove_from_stats()
- return arg.items[0]
- raise
- def call_hasattr(self, tx, obj, attr):
- if attr.is_python_constant():
- name = attr.as_python_constant()
- if isinstance(obj, variables.BuiltinVariable):
- return variables.ConstantVariable(hasattr(obj.fn, name))
- return obj.call_hasattr(tx, name)
- def call_map(self, tx, fn, seq):
- if seq.has_unpack_var_sequence(tx):
- items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
- return variables.TupleVariable(items)
- def call_sum(self, tx, seq, start=_SENTINEL):
- # Special case for sum on tuple of floats and ints
- if isinstance(seq, (variables.ListVariable, variables.TupleVariable)) and all(
- isinstance(x, variables.ConstantVariable)
- and isinstance(x.value, (int, float))
- for x in seq.items
- ):
- if start is self._SENTINEL:
- return variables.ConstantVariable.create(
- sum(x.value for x in seq.items),
- )
- if isinstance(start, variables.ConstantVariable) and isinstance(
- start.value, (int, float)
- ):
- return variables.ConstantVariable.create(
- sum((x.value for x in seq.items), start=start.value),
- )
- if seq.has_unpack_var_sequence(tx):
- if start is self._SENTINEL:
- start = variables.ConstantVariable.create(0)
- items = seq.unpack_var_sequence(tx)
- return BuiltinVariable(functools.reduce).call_function(
- tx,
- [
- BuiltinVariable(operator.add),
- variables.TupleVariable(items),
- start,
- ],
- {},
- )
- def call_StopIteration(self, tx, *args):
- return variables.StopIterationVariable([*args])
- def call_reduce(self, tx, function, iterable, initial=_SENTINEL):
- if iterable.has_unpack_var_sequence(tx):
- items = iterable.unpack_var_sequence(tx)
- if initial is self._SENTINEL:
- value, items = items[0], items[1:]
- else:
- value = initial
- for element in items:
- value = function.call_function(tx, [value, element], {})
- return value
- def call_getattr(
- self, tx, obj: VariableTracker, name_var: VariableTracker, default=None
- ):
- from .. import trace_rules
- from . import (
- ConstantVariable,
- GetAttrVariable,
- PythonModuleVariable,
- TorchInGraphFunctionVariable,
- UserFunctionVariable,
- )
- from .builder import SourcelessBuilder, VariableBuilder
- name = name_var.as_python_constant()
- if not name_var.is_python_constant():
- unimplemented("non-const getattr() name")
- if tx.output.side_effects.is_attribute_mutation(obj):
- if isinstance(obj, variables.UnspecializedNNModuleVariable):
- if (
- name
- in (
- "named_parameters",
- "parameters",
- "named_buffers",
- "buffers",
- "named_modules",
- "modules",
- )
- and obj.is_state_mutated
- and tx.output.side_effects.has_pending_mutation(obj)
- ):
- unimplemented(
- f"pending mutation on nn module, so graph breaking at {name!r} call"
- )
- try:
- # re-read a pending side effect?
- return tx.output.side_effects.load_attr(obj, name)
- except KeyError:
- pass
- if default is not None:
- hasattr_var = self.call_hasattr(tx, obj, name_var)
- assert hasattr_var.as_python_constant() in (True, False)
- if not hasattr_var.as_python_constant():
- return default
- options = {}
- if obj.source:
- source = AttrSource(obj.source, name)
- options["source"] = source
- else:
- source = None
- if name == "__bases__":
- try:
- value = obj.as_python_constant()
- if isinstance(value, type):
- bases = value.__bases__
- if source is not None:
- tuple_args = [
- VariableBuilder(tx, GetItemSource(source, i))(b)
- for i, b in enumerate(bases)
- ]
- else:
- tuple_args = [SourcelessBuilder.create(tx, b) for b in bases]
- return variables.TupleVariable(tuple_args, **options)
- except NotImplementedError:
- pass
- if isinstance(obj, variables.NNModuleVariable):
- return obj.var_getattr(tx, name)
- elif isinstance(
- obj,
- (
- variables.TensorVariable,
- variables.NamedTupleVariable,
- variables.ConstantVariable,
- variables.DistributedVariable,
- variables.UserDefinedClassVariable,
- variables.UserDefinedObjectVariable,
- ),
- ):
- try:
- return obj.var_getattr(tx, name)
- except NotImplementedError:
- return GetAttrVariable(obj, name, **options)
- elif isinstance(obj, TorchInGraphFunctionVariable):
- # Get OpOverload from an OpOverloadPacket, e.g., torch.ops.aten.add.default.
- member = getattr(obj.value, name)
- if isinstance(
- member, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
- ) and trace_rules.is_aten_op_or_tensor_method(member):
- return TorchInGraphFunctionVariable(member, **options)
- elif isinstance(obj, (PythonModuleVariable, DummyModule)):
- if obj.is_torch or name not in obj.value.__dict__:
- member = getattr(obj.value, name)
- else:
- member = obj.value.__dict__[name]
- if config.replay_record_enabled:
- tx.exec_recorder.record_module_access(obj.value, name, member)
- if source is not None:
- return VariableBuilder(tx, source)(member)
- else:
- return SourcelessBuilder.create(tx, member)
- elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
- return ConstantVariable.create(getattr(obj.fn, name))
- else:
- try:
- return obj.var_getattr(tx, name)
- except NotImplementedError:
- return GetAttrVariable(obj, name, **options)
- def call_setattr(
- self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker
- ):
- if isinstance(
- obj,
- (
- variables.DataClassVariable,
- variables.CustomizedDictVariable,
- variables.PlacementVariable,
- variables.UserDefinedObjectVariable,
- ),
- ):
- return obj.call_method(tx, "__setattr__", [name_var, val], {})
- elif (
- tx.output.side_effects.is_attribute_mutation(obj)
- and name_var.is_python_constant()
- ):
- name = name_var.as_python_constant()
- if isinstance(obj, variables.TensorVariable):
- from .builder import wrap_fx_proxy
- if name == "requires_grad":
- # TODO(voz): Make it work properly
- unimplemented(
- "mutating requires_grad can introduce a new leaf from non-leaf or vice versa in "
- "the middle of the graph, which aot_autograd does not currently know how to handle. "
- )
- if name == "data":
- # Remove the old reference in tracked fakes - if we don't do this
- # new .data value size and shape differences will cause
- # tracked fakes to produce incorrect guards. This is sound because the TensorVariable
- # coming out of set_() below will be a new one, and get
- # installed in tracked fakes.
- to_remove = []
- for tf in tx.output.tracked_fakes:
- if tf.source == obj.source:
- to_remove.append(tf)
- for tf in to_remove:
- tx.output.tracked_fakes.remove(tf)
- # Step 1 - disable grads
- with dynamo_disable_grad(tx), torch.no_grad():
- # Step 2 - call `set_`
- out = wrap_fx_proxy(
- tx,
- tx.output.create_proxy(
- "call_function",
- torch.Tensor.set_,
- *proxy_args_kwargs([obj, val], {}),
- ),
- )
- # Step 3 - drop the version counter - this is a step required to get
- # .data setting to play correctly with the autograd engine.
- # Essentially, dynamo is trying to faithfully preserve the (absurd)
- # behavior of .data= from eager mode
- def _lower_version_count_by_1(x):
- version = x._version
- if version > 0:
- version = version - 1
- torch._C._autograd._unsafe_set_version_counter(x, version)
- return x
- tx.output.create_proxy(
- "call_function",
- _lower_version_count_by_1,
- (out.as_proxy(),),
- {},
- )
- _lower_version_count_by_1(obj.as_proxy().node.meta["example_value"])
- # This handles options prop, guards and ends with a clone
- # Step 4 - replace all reference to the current object with the new one
- return out
- tx.output.side_effects.store_attr(obj, name, val)
- if name == "_grad":
- tx.output.side_effects.store_attr(obj, "grad", val)
- return val
- elif isinstance(obj, variables.UserDefinedObjectVariable):
- unimplemented(
- f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
- )
- elif isinstance(obj, variables.NNModuleVariable):
- if not tx.output.is_root_tracer():
- raise AttributeMutationError(
- "Can't inplace modify module params/buffers inside HigherOrderOp"
- )
- if name_var.is_python_constant() and isinstance(
- val, variables.TensorVariable
- ):
- assigning_fake_val = get_fake_value(val.as_proxy().node, tx)
- try:
- getattr_var = obj.var_getattr(tx, name_var.as_python_constant())
- except AttributeError:
- getattr_var = None
- if isinstance(getattr_var, variables.TensorVariable):
- # get_fake_val will get the same fake tensor
- existing_fake_attr = get_fake_value(getattr_var.as_proxy().node, tx)
- # same tensor identiy, setattr is a no-op
- mod_setattr = inspect.getattr_static(obj.module_type, "__setattr__")
- if (
- existing_fake_attr is assigning_fake_val
- and mod_setattr is torch.nn.Module.__setattr__
- ):
- return getattr_var
- obj.convert_to_unspecialized(tx)
- # FIXME (tmanlaibaatar) this is utter hack to unblock HuggingFace export
- # Export generally doesn't want to allow mutations on objects directly,
- # but we don't have good way to do this rn. For now, we make it an undefined
- # behaviour and just set attributes directly on the PretrainedConfig object
- # for now.
- elif isinstance(obj, variables.dicts.HFPretrainedConfigVariable) and tx.export:
- if name_var.is_python_constant() and isinstance(
- val, variables.ConstantVariable
- ):
- setattr(
- obj.obj, name_var.as_python_constant(), val.as_python_constant()
- )
- return ConstantVariable(None)
- def call_delattr(self, tx, obj: VariableTracker, name_var: VariableTracker):
- return self.call_setattr(tx, obj, name_var, variables.DeletedVariable())
- def call_type(self, tx, obj: VariableTracker):
- from .builder import SourcelessBuilder, VariableBuilder
- try:
- py_type = obj.python_type()
- except NotImplementedError as error:
- raise UserError(
- UserErrorType.INVALID_INPUT,
- str(error),
- case_name="unknown_python_type",
- ) from None
- if obj.source is None:
- return SourcelessBuilder.create(tx, py_type)
- else:
- return VariableBuilder(tx, TypeSource(obj.source))(py_type)
- def call_reversed(self, tx, obj: VariableTracker):
- if obj.has_unpack_var_sequence(tx):
- items = list(reversed(obj.unpack_var_sequence(tx)))
- return variables.TupleVariable(items)
- def call_sorted(self, tx, obj: VariableTracker, **kwargs):
- if (
- obj.has_unpack_var_sequence(tx)
- and not isinstance(obj, variables.TensorVariable)
- and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx))
- ):
- function = kwargs.pop("key", None)
- reverse = kwargs.pop(
- "reverse", ConstantVariable.create(False)
- ).as_python_constant()
- assert len(kwargs) == 0
- if function:
- items = sorted(
- obj.unpack_var_sequence(tx),
- key=lambda x: function.call_function(
- tx, [x], {}
- ).as_python_constant(),
- reverse=reverse,
- )
- else:
- items = sorted(
- obj.unpack_var_sequence(tx),
- key=lambda x: x.as_python_constant(),
- reverse=reverse,
- )
- return variables.ListVariable(items)
- def call_chain(self, tx, *args):
- if all(obj.has_unpack_var_sequence(tx) for obj in args):
- items = []
- for obj in args:
- items.extend(obj.unpack_var_sequence(tx))
- return variables.TupleVariable(items)
- def call_islice(self, tx, iterable, *args):
- if iterable.has_unpack_var_sequence(tx) and all(
- x.is_python_constant() for x in args
- ):
- const_args = [x.as_python_constant() for x in args]
- items = iterable.unpack_var_sequence(tx)
- items = list(itertools.islice(items, *const_args))
- return variables.TupleVariable(items)
- # neg is a constant fold function, so we only get here if constant fold is not valid
- def call_neg(self, tx, a):
- if isinstance(a, SymNodeVariable):
- return SymNodeVariable.create(
- tx,
- (operator.neg)(a.as_proxy()),
- sym_num=None,
- )
- # None no-ops this handler and lets the driving function proceed
- return None
- def call_format(self, tx, _format_string, *args, **kwargs):
- format_string = _format_string.as_python_constant()
- return variables.StringFormatVariable.create(format_string, args, kwargs)
- def call_id(self, tx, *args):
- if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
- nn_mod_variable = args[0]
- mod = tx.output.get_submodule(nn_mod_variable.module_key)
- return variables.ConstantVariable.create(id(mod))
- elif len(args) == 1 and isinstance(
- args[0], variables.UserDefinedObjectVariable
- ):
- install_guard(args[0].source.make_guard(GuardBuilder.ID_MATCH))
- constant_result = id(args[0].value)
- return variables.ConstantVariable.create(constant_result)
- else:
- unimplemented(f"call_id with args {args}")
- def call_deepcopy(self, tx, x):
- unimplemented(f"copy.deepcopy {repr(x)}")
- def _comparison_with_tensor(self, tx, left, right):
- from .builder import wrap_fx_proxy_cls
- from .tensor import supported_tensor_comparison_op_values
- op = self.fn
- if op in [operator.is_, operator.is_not]:
- is_result = (
- isinstance(left, TensorVariable)
- and isinstance(right, TensorVariable)
- and id(extract_fake_example_value(left.as_proxy().node))
- == id(extract_fake_example_value(right.as_proxy().node))
- )
- if op is operator.is_:
- return ConstantVariable.create(is_result)
- else:
- return ConstantVariable.create(not is_result)
- if op not in supported_tensor_comparison_op_values:
- unimplemented(f"{op.__name__}({left}, {right})")
- if (
- isinstance(left, TensorVariable)
- and isinstance(right, TensorVariable)
- and (left.size and right.size) is not None
- and left.size != right.size
- ):
- try:
- torch.broadcast_shapes(left.size, right.size)
- except RuntimeError:
- # not broadcastable, can't be compared
- unimplemented(f"{op.__name__}({left}, {right})")
- tensor_cls = left if isinstance(left, TensorVariable) else right
- proxy = tx.output.create_proxy(
- "call_function", op, (left.as_proxy(), right.as_proxy()), {}
- )
- return wrap_fx_proxy_cls(
- type(tensor_cls), # handle Ndarrays and Tensors
- tx,
- proxy,
- )
- def _comparison_with_symnode(self, tx, left, right):
- from .tensor import supported_tensor_comparison_op_values
- op = self.fn
- if op not in supported_tensor_comparison_op_values:
- unimplemented(f"{op.__name__}({left}, {right})")
- proxy = tx.output.create_proxy(
- "call_function", op, (left.as_proxy(), right.as_proxy()), {}
- )
- return SymNodeVariable.create(
- tx,
- proxy,
- sym_num=None,
- )
- def call_and_(self, tx, a, b):
- # Rely on constant_handler
- if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
- return None
- if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
- b, (SymNodeVariable, ConstantVariable)
- ):
- return SymNodeVariable.create(
- tx,
- tx.output.create_proxy(
- "call_function", operator.and_, *proxy_args_kwargs([a, b], {})
- ),
- sym_num=None,
- )
- if hasattr(a, "set_items") and hasattr(b, "set_items"):
- return SetVariable(list(a.set_items & b.set_items))
- # None no-ops this handler and lets the driving function proceed
- def call_or_(self, tx, a, b):
- # Rely on constant_handler
- if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
- return None
- if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
- b, (SymNodeVariable, ConstantVariable)
- ):
- return SymNodeVariable.create(
- tx,
- tx.output.create_proxy(
- "call_function", operator.or_, *proxy_args_kwargs([a, b], {})
- ),
- sym_num=None,
- )
- if hasattr(a, "set_items") and hasattr(b, "set_items"):
- return SetVariable(list(a.set_items | b.set_items))
- # None no-ops this handler and lets the driving function proceed
- return None
- def call_not_(self, tx, a):
- if isinstance(a, SymNodeVariable):
- return SymNodeVariable.create(
- tx,
- tx.output.create_proxy(
- "call_function", operator.not_, *proxy_args_kwargs([a], {})
- ),
- sym_num=None,
- )
- # Unwrap the underlying ConstDictVariable
- if isinstance(a, DictView):
- a = a.dv_dict
- if isinstance(a, (ListVariable, ConstDictVariable)):
- return ConstantVariable.create(len(a.items) == 0)
- return None
- def call_contains(self, tx, a: VariableTracker, b: VariableTracker):
- return a.call_method(tx, "__contains__", [b], {})
- call_all = _polyfill_call_impl("all")
- call_any = _polyfill_call_impl("any")
- @contextlib.contextmanager
- def dynamo_disable_grad(tx):
- from . import GradModeVariable
- org_value = torch.is_grad_enabled()
- gmv = GradModeVariable.create(tx, False)
- try:
- gmv.enter(tx)
- yield
- finally:
- gmv.exit(tx)
|