| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # mypy: allow-untyped-defs
- from contextlib import contextmanager
- import torch
- import torch._custom_ops
- from torch._C import DispatchKey
- from torch._higher_order_ops.strict_mode import strict_mode
- from torch._higher_order_ops.utils import autograd_not_implemented
- from torch._ops import HigherOrderOperator
- from torch._subclasses.fake_tensor import FakeTensorMode
- from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode, track_tensor_tree
- from torch.utils import _pytree as pytree
- _export_tracepoint = HigherOrderOperator("_export_tracepoint")
- @_export_tracepoint.py_impl(ProxyTorchDispatchMode)
- def export_tracepoint_dispatch_mode(mode, *args, **kwargs):
- if not mode.enable_tracing:
- return _export_tracepoint(*args, **kwargs)
- p_args, p_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, (args, kwargs))
- proxy = mode.tracer.create_proxy(
- "call_function", _export_tracepoint, p_args, p_kwargs
- )
- return track_tensor_tree(args, proxy, constant=None, tracer=mode.tracer)
- @_export_tracepoint.py_impl(FakeTensorMode)
- def export_tracepoint_fake_tensor_mode(mode, *args, **kwargs):
- with mode:
- return args
- @_export_tracepoint.py_functionalize_impl
- def export_tracepoint_functional(ctx, *args, **kwargs):
- unwrapped_args = ctx.unwrap_tensors(args)
- unwrapped_kwargs = ctx.unwrap_tensors(kwargs)
- with ctx.redispatch_to_next():
- out = _export_tracepoint(*unwrapped_args, **unwrapped_kwargs)
- return ctx.wrap_tensors(out)
- _export_tracepoint.py_impl(DispatchKey.Autograd)(
- autograd_not_implemented(_export_tracepoint, deferred_error=True)
- )
- @_export_tracepoint.py_impl(DispatchKey.CPU)
- def export_tracepoint_cpu(*args, **kwargs):
- return args
- def _wrap_submodule(mod, path, module_call_specs):
- assert isinstance(mod, torch.nn.Module)
- assert path != ""
- submodule = mod
- for name in path.split("."):
- if not hasattr(submodule, name):
- raise RuntimeError(f"Couldn't find submodule at path {path}")
- submodule = getattr(submodule, name)
- def update_module_call_signatures(path, in_spec, out_spec):
- if path in module_call_specs:
- assert module_call_specs[path]["in_spec"] == in_spec
- assert module_call_specs[path]["out_spec"] == out_spec
- module_call_specs[path] = {"in_spec": in_spec, "out_spec": out_spec}
- def check_flattened(flat_args):
- for a in flat_args:
- if not (isinstance(a, (torch.Tensor, str, int, float, bool)) or a is None):
- raise AssertionError(
- f"Only Tensors or scalars are supported as pytree flattened inputs, got: {a}"
- )
- def pre_hook(module, args, kwargs):
- flat_args, in_spec = pytree.tree_flatten((args, kwargs))
- check_flattened(flat_args)
- flat_args = _export_tracepoint(*flat_args, kind="module_call_inputs", path=path)
- args, kwargs = pytree.tree_unflatten(flat_args, in_spec)
- return args, kwargs
- def post_hook(module, args, kwargs, res):
- _, in_spec = pytree.tree_flatten((args, kwargs))
- flat_res, out_spec = pytree.tree_flatten(res)
- check_flattened(flat_res)
- flat_res = _export_tracepoint(*flat_res, kind="module_call_outputs", path=path)
- update_module_call_signatures(path, in_spec, out_spec)
- return pytree.tree_unflatten(flat_res, out_spec)
- pre_handle = submodule.register_forward_pre_hook(pre_hook, with_kwargs=True)
- post_handle = submodule.register_forward_hook(post_hook, with_kwargs=True)
- return pre_handle, post_handle
- @contextmanager
- def _wrap_submodules(f, preserve_signature, module_call_signatures):
- handles = []
- try:
- for path in preserve_signature:
- handles.extend(_wrap_submodule(f, path, module_call_signatures))
- yield
- finally:
- for handle in handles:
- handle.remove()
- def _mark_strict_experimental(cls):
- def call(self, *args):
- return strict_mode(self, args)
- cls.__call__ = call
- return cls
|