| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901 |
- # mypy: allow-untyped-defs
- from __future__ import annotations
- import contextlib
- import dataclasses
- import enum
- import functools
- import logging
- import threading
- import traceback
- import unittest.mock
- import weakref
- from abc import abstractmethod
- from contextlib import contextmanager
- from typing import (
- Any,
- Callable,
- Dict,
- Generic,
- List,
- NamedTuple,
- Optional,
- Set,
- Tuple,
- TYPE_CHECKING,
- TypeVar,
- )
- from torch.utils import _pytree as pytree
- from torch.utils._traceback import CapturedTraceback
- from torch.utils.weak import WeakTensorKeyDictionary
- log = logging.getLogger(__name__)
- if TYPE_CHECKING:
- import sympy
- # Import the following modules during type checking to enable code intelligence features,
- # such as auto-completion in tools like pylance, even when these modules are not explicitly
- # imported in user code.
- import torch
- """
- torch._guards is the definitional source of truth for general purpose guard structures.
- An important thing to keep in mind here is the preservation of layering. There should be no dynamo notions,
- and no guard installation notions here.
- """
- class CompileId(NamedTuple):
- frame_id: int
- # This id is per-frame, and counts how many times we've compiled this
- # frame. This could have been a global id but having this be per-frame
- # gives you a better intuitive sense for how many recompiles have occurred
- # so far.
- frame_compile_id: int
- # TODO: consider also tracking the recompilation count
- def __str__(self):
- return f"{self.frame_id}/{self.frame_compile_id}"
- class TraceId(NamedTuple):
- compile_id: CompileId
- # This starts off as 0, and every time we restart analysis it goes
- # up by one
- attempt: int
- def __str__(self):
- if self.attempt == 0:
- return str(self.compile_id)
- else:
- return f"{self.compile_id}_{self.attempt}"
- class GuardSource(enum.Enum):
- LOCAL = 0
- GLOBAL = 1
- LOCAL_NN_MODULE = 2
- GLOBAL_NN_MODULE = 3
- CONSTANT = 4
- RANDOM_VALUE = 5
- SHAPE_ENV = 6
- LOCAL_FSDP_MODULE = 7
- GLOBAL_FSDP_MODULE = 8
- BACKWARD_STATE = 9
- EPHEMERAL = 10
- SYNTHETIC_LOCAL = 11
- def is_fsdp_module(self) -> bool:
- return self in (GuardSource.GLOBAL_FSDP_MODULE, GuardSource.LOCAL_FSDP_MODULE)
- def is_nn_module(self) -> bool:
- return (
- self
- in (
- GuardSource.GLOBAL_NN_MODULE,
- GuardSource.LOCAL_NN_MODULE,
- )
- or self.is_fsdp_module()
- )
- def is_local(self):
- return self in (
- GuardSource.LOCAL,
- GuardSource.LOCAL_NN_MODULE,
- GuardSource.LOCAL_FSDP_MODULE,
- )
- """
- Base class for a "GuardBuilder" role.
- The GuardBuilderBase role is to represent a scope within which to build a guard. The name is a little
- confusing, as its not a builder, but for the sake of avoiding a lot of renames and keeping the original reference
- to torchdynamo's GuardBuilder.
- Note: create_fn is invoked with a GuardBuilderBase and a Guard. A GuardBuilder is chosen based
- on GuardSource's select function.
- There is value in keeping this GuardBuilderBase empty to keep layering clean.
- """
- class GuardBuilderBase:
- pass
- class ShapeGuard(NamedTuple):
- expr: sympy.Expr
- stack: CapturedTraceback
- @dataclasses.dataclass
- class Guard:
- # originating_source is the source that called the make_guard method to
- # construct this guard object. The property name specifies what exactly it
- # is the guard is guarding on. The meaning of the name is dependent on the
- # create_fn; you must look at the use-site inside create_fn to know what
- # name means.
- #
- # That being said, although you might think this is just a "name", name is
- # usually an arbitrary Python expression that will be evaluated with all
- # globals (and locals, if you create a LOCAL guard) to extract the Python
- # object that we want to perform guard tests on. This evaluation
- # typically happens in GuardBuilder.eval. In these cases, name is
- # typically produced by originating_source.name() (not to be confused with
- # GuardSource - the property source).
- #
- # Occasionally, name is not a valid Python expression; sometimes
- # it is meaningless. Example create_fns that are like this include
- # GRAD_MODE and SHAPE_ENV.
- originating_source: Source
- create_fn: Callable[[GuardBuilderBase, Guard], None]
- # Export only. These values are written to at time of guard check_fn creation.
- guard_types: Optional[List[str]] = None
- code_list: Optional[List[str]] = None
- obj_weakref: Optional[object] = None
- guarded_class_weakref: Optional[type] = None
- stack: Optional[CapturedTraceback] = None
- user_stack: Optional[traceback.StackSummary] = None
- _hash: Optional[int] = None
- def __hash__(self):
- if self._hash is None:
- self._hash = hash((self.name, self.source, id(self.create_fn)))
- return self._hash
- def sort_key(self):
- # Put the duplicate input guards at the end. The duplicate guards have
- # two sources while guard.name only considers one source.
- from ._dynamo.guards import GuardBuilder
- is_duplicate_input = (
- isinstance(self.create_fn, functools.partial)
- and self.create_fn.func is GuardBuilder.DUPLICATE_INPUT
- )
- return (
- is_duplicate_input,
- self.source.value if self.source else -1,
- len(self.name),
- self.name,
- self.inner_create_fn().__code__.co_firstlineno,
- )
- def __lt__(self, other):
- return self.sort_key() < other.sort_key()
- def inner_create_fn(self):
- if isinstance(self.create_fn, functools.partial):
- return self.create_fn.func
- else:
- return self.create_fn
- @property
- def name(self) -> str:
- return self.originating_source.name()
- @property
- def source(self) -> GuardSource:
- return self.originating_source.guard_source()
- @staticmethod
- def weakref_to_str(obj_weakref):
- """
- This is a workaround of a Python weakref bug.
- `obj_weakref` is instance returned by `weakref.ref`,
- `str(obj_weakref)` is buggy if the original obj overrides __getattr__, e.g:
- class MyConfig(dict):
- def __getattr__(self, x):
- return self[x]
- obj = MyConfig(offset=5)
- obj_weakref = weakref.ref(obj)
- str(obj_weakref) # raise error: KeyError: '__name__'
- """
- if isinstance(obj_weakref, weakref.ReferenceType):
- obj = obj_weakref()
- if obj is not None:
- return f"<weakref at {hex(id(obj_weakref))}; to '{obj.__class__.__name__}' at {hex(id(obj))}>"
- else:
- return f"<weakref at {hex(id(obj_weakref))}; dead>"
- else:
- return str(obj_weakref)
- def __repr__(self):
- s = f"""
- {self.source.name.lower() if self.source else ""} {repr(self.name)} {self.inner_create_fn().__name__}
- {{
- 'guard_types': {self.guard_types},
- 'code': {self.code_list},
- 'obj_weakref': {self.weakref_to_str(self.obj_weakref)}
- 'guarded_class': {self.guarded_class_weakref}
- }}
- """
- return s
- def __str__(self):
- output = f"Name: {repr(self.name)}\n"
- source = self.source.name.lower() if self.source else ""
- output += f" Source: {source}\n"
- output += f" Create Function: {self.inner_create_fn().__name__}\n"
- output += f" Guard Types: {self.guard_types}\n"
- output += f" Code List: {self.code_list}\n"
- output += f" Object Weakref: {self.weakref_to_str(self.obj_weakref)}\n"
- output += f" Guarded Class Weakref: {self.guarded_class_weakref}\n"
- return output
- def create(self, builder: GuardBuilderBase):
- try:
- return self.create_fn(builder, self)
- except Exception:
- log.exception("Error while creating guard:\n%s", str(self).rstrip())
- if self.stack:
- log.error("Created at:\n%s", "".join(self.stack.format()[-4:]).rstrip())
- raise
- def is_nn_module(self):
- return self.source.is_nn_module()
- def is_fsdp_module(self):
- return self.source.is_fsdp_module()
- def is_local(self):
- return self.source.is_local()
- def set_export_info(self, guard_type, guarded_class, code_list, obj_weakref):
- if not self.guard_types:
- self.guard_types = list()
- self.guard_types.append(guard_type)
- assert self.guarded_class_weakref in (
- guarded_class,
- None,
- ), "Guarded class id must be identical, or None"
- self.guarded_class_weakref = guarded_class
- if not self.code_list:
- self.code_list = code_list
- else:
- self.code_list.extend(code_list)
- # Some objects are ephemeral, e.g., list[slice(1, 2)]. If we have
- # multiple guards on the same object, the weakref can die between the
- # invocation of set_export_info calls. So a dead weakref is also
- # acceptable.
- assert (
- self.obj_weakref
- in (
- obj_weakref,
- None,
- )
- or callable(self.obj_weakref)
- and self.obj_weakref() is None
- ), "Guarded object must be identical, None or ephemeral (dead weakref)"
- self.obj_weakref = obj_weakref
- T = TypeVar("T")
- """
- Parent structure for guard env expressions.
- A GuardEnvExpr can have any subtype.
- Note: All subtypes must be handled exhaustively in
- torch._dynamo.guards._parse_guard_env_guards to avoid a RuntimeError.
- """
- @dataclasses.dataclass
- class GuardEnvExpr:
- pass
- """
- A class representing a pair of duplicate inputs.
- input_pos_a and input_pos_b are input positions we have deduped.
- """
- @dataclasses.dataclass
- class DuplicateInputs(GuardEnvExpr):
- input_source_a: Source
- input_source_b: Source
- def __post_init__(self):
- assert self.input_source_a != self.input_source_b
- """
- Checkpointable is an interface for driving state snapshotting, left purposely vague for now.
- copy_graphstate() -> T, a somewhat legacy name, is expected to emit a snapshot of any type that
- can also be taken in at restore_graphstate(T) calls.
- When to snapshot, is, at the moment, an implementation detail of upstream callers. Checkpointable
- does not provide any garuantees around consistency, idempotency, or safety of calling its APIs, yet.
- In the future, it will have a closer coupling to a generic Checkpoint management system.
- """
- class Checkpointable(Generic[T]):
- @abstractmethod
- def copy_graphstate(self) -> T:
- ...
- @abstractmethod
- def restore_graphstate(self, state: T):
- ...
- class GuardsCheckpointState:
- """
- The GuardCheckpointState - it is the T of Checkpointable[T] for GuardsContext
- """
- dynamo_guards: Set[Guard] = set()
- def __init__(self, dynamo_guards):
- self.dynamo_guards = dynamo_guards
- def diff(self, other):
- """
- Produces a delta against another GuardsCheckpointState.
- Returns None if no delta is found, otherwise, return a set() of mismatched
- Guard type objects.
- """
- r = self.dynamo_guards.difference(other.dynamo_guards)
- if len(r) == 0:
- return None
- return r
- def __eq__(self, other):
- return self.diff(other) is None
- class ModuleContextCheckpointState:
- nn_modules: Dict[str, torch.nn.Module] = {}
- def __init__(self, nn_modules):
- self.nn_modules = nn_modules
- def diff(self, other):
- """
- Produces a delta against another ModuleContextCheckpointState.
- Returns None if no delta is found, otherwise, return a set() of mismatched
- module key names.
- """
- r = set(self.nn_modules.keys()).difference(set(other.nn_modules.keys()))
- if len(r) == 0:
- return None
- return r
- def __eq__(self, other):
- return self.diff(other) is None
- class ModuleContext(Checkpointable[ModuleContextCheckpointState]):
- def __init__(self):
- self.nn_modules: Dict[str, Any] = {}
- def copy_graphstate(self):
- return ModuleContextCheckpointState(dict(self.nn_modules))
- def restore_graphstate(self, state):
- assert isinstance(state, ModuleContextCheckpointState)
- self.nn_modules = state.nn_modules
- class GlobalContextCheckpointState:
- global_state: Dict[str, Tuple[Callable, ...]] = {}
- def __init__(self, global_states):
- self.global_state = global_states
- def diff(self, other):
- """
- Produces a delta against another GlobalContextCheckpointState.
- Returns None if no delta is found, otherwise, return a set() of mismatched
- global key names.
- """
- r = set(self.global_state.keys()).difference(set(other.global_state.keys()))
- if len(r) == 0:
- return None
- return r
- def __eq__(self, other):
- return self.diff(other) is None
- class GlobalContext(Checkpointable[GlobalContextCheckpointState]):
- """
- This keeps track of the global torch state during tracing of a function.
- For example, torch.is_grad_enabled.
- """
- _supported_global_states = {
- "grad_enabled",
- "torch_function_enabled",
- "autocast_enabled",
- "autocast_cpu_enabled",
- "autocast_gpu_dtype",
- "autocast_cpu_dtype",
- "autocast_cache_enabled",
- }
- def __init__(self):
- self.global_state: Dict[str, Tuple[Callable, ...]] = {}
- def copy_graphstate(self):
- return GlobalContextCheckpointState(dict(self.global_state))
- def restore_graphstate(self, state):
- assert isinstance(state, GlobalContextCheckpointState)
- self.global_state = state.global_state
- assert (
- len(self.global_state) == len(self._supported_global_states)
- and set(self.global_state.keys()) == self._supported_global_states
- ), "Global state mismatch"
- for func, args in self.global_state.values():
- func(args)
- """
- A GuardsContext is a checkpointable representation of all the guards in the current tracing
- context. It's lifecycle is bound 1:1 to the tracing context, and it should never be instantiated
- directly outside of it. For passing around internal state representations of this object,
- prefer to extract them with copy_graphstate to produce a GuardsCheckpointState.
- """
- # Like a Set[Guard] but will record the user stack on all guards at the
- # time they were installed at their destination
- class GuardsSet:
- def __init__(self, inner=None):
- if inner is None:
- inner = set()
- self.inner = inner
- def __iter__(self):
- return iter(self.inner)
- def __len__(self):
- return len(self.inner)
- # Subtraction along with bool is typically used to determine the delta of
- # added guards between checkpoints for higher order ops
- def __sub__(self, other):
- return GuardsSet(self.inner - other.inner)
- def __bool__(self):
- return bool(self.inner)
- def add(self, guard: Guard, *, collect_debug_stack=True, skip=0):
- if guard in self.inner:
- return
- if collect_debug_stack:
- if guard.stack is None:
- guard.stack = CapturedTraceback.extract(skip=1 + skip)
- if guard.user_stack is None:
- guard.user_stack = TracingContext.extract_stack()
- self.inner.add(guard)
- def update(self, *others: Set[Guard]):
- for o in others:
- for g in o:
- self.add(g, skip=1)
- def remove_guards_with_source(self, source):
- """Delete all guards with a given source"""
- self.inner = {g for g in self.inner if g.originating_source != source}
- class GuardsContext(Checkpointable[GuardsCheckpointState]):
- def __init__(self):
- self.dynamo_guards: GuardsSet = GuardsSet()
- self.aotautograd_guards: List[GuardEnvExpr] = []
- def copy_graphstate(self):
- return GuardsCheckpointState(set(self.dynamo_guards.inner))
- def restore_graphstate(self, state):
- # NB: "steals" the passed in state
- assert isinstance(state, GuardsCheckpointState)
- self.dynamo_guards = GuardsSet(state.dynamo_guards)
- _TLS = threading.local()
- """
- TracingContext is the source of truth for all currently accumulated information
- needed to trace. Its lifecycle is kept 1:1 when using TorchDynamo, but other systems
- are open to managing their own TracingContext with that in mind.
- The purpose of TracingContext is not to be a dumping ground, or god object, but rather to avoid
- having to plumb complex subsystems across multiple verticals.
- Ex: A common example is guard accumulation between dynamo, shape_env, aot_autograd, and inductor.
- Accessing the current tracing context via
- TracingContext.get() allows users to accumulate their own guards for processing, without needing to know how
- to plumb objects back up to where frame interpretation happened.
- Note that you can end up with multiple TracingContext for a single compilation
- of a frame, as we reset the TracingContext whenever we restart analysis.
- CompileContext is a more overarching context that encompasses multiple restarts.
- """
- class CompileContext:
- @staticmethod
- def get() -> CompileContext:
- assert _TLS.compile_context is not None
- return _TLS.compile_context
- @staticmethod
- def try_get() -> Optional[CompileContext]:
- return getattr(_TLS, "compile_context", None)
- def __init__(self, compile_id):
- assert compile_id is None or isinstance(compile_id, CompileId)
- self.compile_id: Optional[CompileId] = compile_id
- self.attempt = 0
- @staticmethod
- def current_compile_id():
- self = CompileContext.try_get()
- if self is None:
- return None
- return self.compile_id
- @staticmethod
- def current_trace_id():
- self = CompileContext.try_get()
- if self is None:
- return None
- if self.compile_id is None:
- return None
- return TraceId(self.compile_id, self.attempt)
- class TracingContext:
- """
- Provides the currently installed TracingContext, or None.
- Note that it is a staticmethod, and invocations outside of `with tracing()` (see below), are valid but
- will return None.
- """
- @staticmethod
- def try_get() -> Optional[TracingContext]:
- return getattr(_TLS, "tracing_context", None)
- @staticmethod
- def get() -> TracingContext:
- if ctx := TracingContext.try_get():
- return ctx
- raise RuntimeError(
- "TracingContext.get() must be called within an ongoing trace."
- )
- def __init__(self, fake_mode):
- self.guards_context = GuardsContext()
- self.module_context = ModuleContext()
- self.global_context = GlobalContext()
- self.fake_mode = fake_mode
- self.frame_summary_stack = []
- # This is morally part of frame_summary_stack, but it is kept separate
- # for clarity. As we process a frame, this variable gets updated
- # to keep track of what line we are in the function. We make a
- # function call, this gets cleared and the frame location is pushed
- # to frame_summary_stack (prepping this variable for the inner frame's
- # progress)
- self.loc_in_frame = None
- # this is only set after aot_autograd
- self.fw_metadata = None
- # this is only set after aot_autograd
- self.aot_graph_name = None
- self.params_flat = None
- # this is for extended return calling convention from backend
- # compiler to aot_autograd
- # Per output, what the compiler specified stride of the output is,
- # or None if no stride is known. This is always the HINT, it
- # is never a SymInt (it would be better if it was a SymInt, but
- # I can't conveniently get this from Inductor atm. Also, be
- # careful not to accidentally induce guards on the SymInt if
- # you ever do change this in aot_autograd.py; you should check
- # on permutations preferentially.)
- self.output_strides: Optional[List[Optional[List[int]]]] = None
- # When this is True, whenever we encounter an int in Dynamo tracing,
- # we will (1) force unspec it and (2) force it as a size-like unbacked
- # integer. This is currently used when processing certain lists of
- # ints that are known to be size-like and may have 0/1 entries that we
- # must not specialize on.
- self.force_unspec_int_unbacked_size_like = False
- # See note [Tensor Fakification and Symbol Caching]
- self.tensor_to_context = WeakTensorKeyDictionary()
- # If this true, Aot Autograd will return output Fake Tensors with appropiate
- # meta on the first invocation
- # see note: [Returning Fake Tensors on First AOT Autograd Call]
- self.fakify_first_call = False
- def clear(self):
- # Look at the note in output_graph.py in function `save_global_state`
- # for the context on clearing global context.
- self.global_context.global_state = {}
- @staticmethod
- @contextmanager
- def patch(**kwargs):
- prior = {}
- ctx = TracingContext.get()
- for key in kwargs.keys():
- # KeyError on invalid entry
- prior[key] = getattr(ctx, key)
- for key, val in kwargs.items():
- setattr(ctx, key, val)
- try:
- yield
- finally:
- for key, val in prior.items():
- setattr(ctx, key, val)
- @staticmethod
- def extract_stack():
- self = TracingContext.try_get()
- if self is None:
- return traceback.StackSummary()
- stack = self.frame_summary_stack
- if self.loc_in_frame is not None:
- stack = stack + [self.loc_in_frame]
- return traceback.StackSummary.from_list(stack)
- # Call this when you want to call into some code that isn't necessarily
- # associated with the current frame state
- @staticmethod
- @contextlib.contextmanager
- def clear_frame():
- tc = TracingContext.get()
- with unittest.mock.patch.object(
- tc, "frame_summary_stack", []
- ), unittest.mock.patch.object(tc, "loc_in_frame", None):
- try:
- yield
- except Exception as e:
- # Prevent real_stack from getting attached
- #
- # The invariant is that if an Exception as real_stack, we've
- # appropriately attached a user stack and we no longer need to
- # attach anything. Because we cannot conveniently interpose
- # when an exception is thrown, we instead interpose everywhere
- # we set what the user stack is set (using the context
- # manager). However, our compiler stack does "tail calls"
- # (when it calls into user compiler), at which point the
- # parent exception frames would incorrectly attach an
- # incorrect frame.
- #
- # However, if, somehow, someone raised an exception with this
- # scope that had a stack (for example, because they are
- # restoring the user stack state appropriately as they process
- # node by node), we should respect it. Thus, we cannot
- # unconditionally set None.
- if not hasattr(e, "real_stack"):
- e.real_stack = None # type: ignore[attr-defined]
- raise
- @staticmethod
- @contextlib.contextmanager
- def current_frame(frame_summary):
- # frame_summary can be None to solely take advantage of real_stack
- # attachment to thrown exceptions
- tc = TracingContext.get()
- if frame_summary is not None:
- tc.frame_summary_stack.append(frame_summary)
- old = tc.loc_in_frame
- tc.loc_in_frame = None
- try:
- yield
- except Exception as e:
- if not hasattr(e, "real_stack"):
- e.real_stack = tc.extract_stack() # type: ignore[attr-defined]
- raise
- finally:
- if frame_summary is not None:
- tc.frame_summary_stack.pop()
- tc.loc_in_frame = old
- @staticmethod
- @contextlib.contextmanager
- def report_output_strides():
- tc = TracingContext.try_get()
- if tc is None:
- yield None
- return
- old_output_strides = tc.output_strides
- tc.output_strides = []
- try:
- yield tc.output_strides
- finally:
- tc.output_strides = old_output_strides
- @staticmethod
- def set_current_loc(filename, lineno, frame_name):
- TracingContext.get().loc_in_frame = traceback.FrameSummary(
- filename, lineno, frame_name, lookup_line=False
- )
- @contextmanager
- def compile_context(context: Optional[CompileContext]):
- old_context = getattr(_TLS, "compile_context", None)
- _TLS.compile_context = context
- try:
- yield context
- finally:
- _TLS.compile_context = old_context
- @contextmanager
- def tracing(context: Optional[TracingContext]):
- """
- This function installs the passed in tracing context as a dynamic scoped
- global variable.
- Calls to TracingContext.get() while not under a `with tracing()` context
- will return None.
- """
- old_context = getattr(_TLS, "tracing_context", None)
- _TLS.tracing_context = context
- try:
- yield context
- except Exception as e:
- if not hasattr(e, "real_stack") and context is not None:
- e.real_stack = context.extract_stack() # type: ignore[attr-defined]
- raise
- finally:
- if (
- context is not None
- and context.fake_mode is not None
- and context.fake_mode.shape_env is not None
- ):
- context.fake_mode.shape_env.cleanup()
- _TLS.tracing_context = old_context
- # Subclasses can be found in torch/_dynamo/source.py
- # TODO(voz): Consider a toplevel torch/_source.py
- @dataclasses.dataclass(frozen=True)
- class Source:
- def is_dict_key(self):
- return False
- def is_ephemeral(self):
- return False
- def reconstruct(self, codegen):
- raise NotImplementedError
- def guard_source(self) -> GuardSource:
- raise NotImplementedError
- def name(self) -> str:
- raise NotImplementedError
- def make_guard(self, fn) -> Guard:
- if self.guard_source() is GuardSource.CONSTANT:
- raise NotImplementedError
- return Guard(self, fn)
- def is_nn_module(self) -> bool:
- return self.guard_source().is_nn_module()
- def subguards_allowed(self):
- """True if you can guard on attributes of this"""
- return self.guard_source() != GuardSource.SYNTHETIC_LOCAL
- # Subclasses can be found in torch/_dynamo/source.py
- @dataclasses.dataclass(frozen=True)
- class ChainedSource(Source):
- base: Source
- def is_dict_key(self):
- # Recurse until you either hit a ConstDictKey or a Source
- return self.base.is_dict_key()
- def is_ephemeral(self):
- return self.base.is_ephemeral()
- def detect_fake_mode(inputs: Any = None):
- """
- Attempts to "detect" what the current fake mode is. If there is one ambiently
- available from TracingContext, we preferentially use that. Otherwise, we
- heuristically detect the fake mode via the following sources, in order of
- priority:
- - Currently active fake mode on stack
- - Fake mode associated with passed in tensors (inputs does not
- have to be flattened)
- """
- from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
- fake_modes = []
- if context := TracingContext.try_get():
- fake_mode = context.fake_mode
- if fake_mode is not None:
- fake_modes.append((fake_mode, "tracing context", 0))
- from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
- for i, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
- if isinstance(m, FakeTensorMode):
- fake_modes.append((m, "active fake mode", i))
- flat_inputs = pytree.tree_leaves(inputs)
- for i, flat_input in enumerate(flat_inputs):
- if isinstance(flat_input, FakeTensor):
- fake_modes.append((flat_input.fake_mode, "fake tensor input", i))
- if fake_modes:
- fake_mode, desc1, i1 = fake_modes[0]
- for m, desc2, i2 in fake_modes[1:]:
- assert fake_mode is m, (
- f"fake mode ({fake_mode}) from {desc1} {i1} doesn't match mode ({m}) from {desc2} {i2}\n\n"
- f"fake mode from {desc1} {i1} allocated at:\n{fake_mode.stack}\n"
- f"fake mode from {desc2} {i2} allocated at:\n{m.stack}"
- )
- return fake_mode
- else:
- return None
- def active_fake_mode():
- """
- Inspects the dispatch mode stack for an active fake mode and returns it.
- Returns None if no fake mode is active.
- """
- from torch._subclasses.fake_tensor import FakeTensorMode
- from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
- for _, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
- if isinstance(m, FakeTensorMode):
- return m
- return None
|