| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # mypy: allow-untyped-defs
- import logging
- import torch
- from .. import ir, lowering as L
- from ..select_algorithm import (
- autotune_select_algorithm,
- ExternKernelChoice,
- TritonTemplate,
- )
- from ..utils import (
- ceildiv as cdiv,
- use_aten_gemm_kernels,
- use_cutlass_template,
- use_triton_template,
- )
- from ..virtualized import V
- from .mm import _is_static_problem
- from .mm_common import addmm_epilogue, mm_args, mm_configs, mm_options
- log = logging.getLogger(__name__)
- aten = torch.ops.aten
- def bmm_grid(b, m, n, meta):
- return (cdiv(m, meta["BLOCK_M"]) * cdiv(n, meta["BLOCK_N"]), b, 1)
- bmm_template = TritonTemplate(
- name="bmm",
- grid=bmm_grid,
- source=r"""
- {{def_kernel("A", "B")}}
- M = {{size("A", -2)}}
- N = {{size("B", -1)}}
- K = {{size("A", -1)}}
- stride_aq = {{stride("A", 0)}}
- stride_am = {{stride("A", 1)}}
- stride_ak = {{stride("A", 2)}}
- stride_bq = {{stride("B", 0)}}
- stride_bk = {{stride("B", 1)}}
- stride_bn = {{stride("B", 2)}}
- # based on triton.ops.matmul
- pid = tl.program_id(0)
- grid_m = (M + BLOCK_M - 1) // BLOCK_M
- grid_n = (N + BLOCK_N - 1) // BLOCK_N
- # re-order program ID for better L2 performance
- width = GROUP_M * grid_n
- group_id = pid // width
- group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
- pid_m = group_id * GROUP_M + (pid % group_size)
- pid_n = (pid % width) // (group_size)
- rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
- rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
- if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1):
- ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
- else:
- ram = rm % M
- if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1):
- rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
- else:
- rbn = rn % N
- rk = tl.arange(0, BLOCK_K)
- idx_q = tl.program_id(1) # batch dimension for BMM
- A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak + idx_q*stride_aq)
- B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn + idx_q*stride_bq)
- acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
- for k in range(K, 0, -BLOCK_K):
- if EVEN_K:
- a = tl.load(A)
- b = tl.load(B)
- else:
- a = tl.load(A, mask=rk[None, :] < k, other=0.)
- b = tl.load(B, mask=rk[:, None] < k, other=0.)
- acc += tl.dot(a, b, allow_tf32=ALLOW_TF32)
- A += BLOCK_K * stride_ak
- B += BLOCK_K * stride_bk
- # rematerialize rm and rn to save registers
- rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
- rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
- idx_q = tl.program_id(1) # batch dimension for BMM
- idx_m = rm[:, None]
- idx_n = rn[None, :]
- mask = (idx_m < M) & (idx_n < N)
- # inductor generates a suffix
- {{store_output(("idx_q", "idx_m", "idx_n"), "acc", "mask")}}
- """,
- )
- aten_bmm = ExternKernelChoice(torch.bmm, "at::bmm_out")
- aten_baddbmm = ExternKernelChoice(torch.baddbmm, "at::baddbmm_out")
- @L.register_lowering(aten.bmm)
- def tuned_bmm(mat1, mat2, *, layout=None):
- if all(x.get_device().type == "cpu" for x in [mat1, mat2]):
- # decompose to small ops when memory bound
- if mat1.get_size()[1] == 1 or mat2.get_size()[2] == 1:
- mat1 = L.unsqueeze(mat1, -1)
- mat2 = L.unsqueeze(mat2, 1)
- return L.sum_(L.mul(mat1, mat2), axis=2)
- def is_valid_to_require_contiguous(t):
- if not ir.is_storage_and_layout(t):
- return True
- _, layout = ir.as_storage_and_layout(t, freeze=False)
- return isinstance(layout, ir.FlexibleLayout)
- def is_preferred_layout_as_bmm_input(sizes, strides):
- # contiguous on one of the last two dims
- return (
- strides[-1] == 1 and (sizes[-2] == 1 or strides[-2] >= sizes[-1])
- ) or (strides[-2] == 1 and (sizes[-1] == 1 or strides[-1] >= sizes[-2]))
- # Make the input of bmm contiguous
- # if it is not contiguous on either of the last two dims,
- # because bmm cpu implementation would do contiguous() if not.
- # This is to avoid additional copies in bmm.
- def may_require_contiguous(t, meta_t):
- sizes = meta_t.meta["val"].size()
- strides = meta_t.meta["val"].stride()
- if not is_preferred_layout_as_bmm_input(sizes, strides):
- t = ir.ExternKernel.require_contiguous(t)
- return t
- if is_valid_to_require_contiguous(mat1):
- meta_mat1 = V.graph.current_node.args[0]
- mat1 = may_require_contiguous(mat1, meta_mat1)
- if is_valid_to_require_contiguous(mat2):
- meta_mat2 = V.graph.current_node.args[1]
- mat2 = may_require_contiguous(mat2, meta_mat2)
- m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout)
- # options to tune from
- choices = [aten_bmm.bind((mat1, mat2), layout)] if use_aten_gemm_kernels() else []
- if use_triton_template(layout):
- for config in mm_configs(m, n, k):
- bmm_template.maybe_append_choice(
- choices,
- input_nodes=(mat1, mat2),
- layout=layout,
- **mm_options(config, m, n, k, layout),
- )
- static_shape, is_nonzero = _is_static_problem([mat1, mat2], layout)
- if static_shape and is_nonzero and use_cutlass_template(layout, m, n, k):
- from ..codegen.cuda.gemm_template import CUTLASSGemmTemplate
- CUTLASSGemmTemplate.add_cutlass_gemm_choices(choices, layout, [mat1, mat2])
- if len(choices) == 0:
- log.warning("No choices for GEMM, using ATen backend as fallback")
- choices.append(aten_bmm.bind((mat1, mat2), layout))
- return autotune_select_algorithm("bmm", choices, [mat1, mat2], layout)
- # Don't register this since it is slower than decomposing it
- # @L.register_lowering(aten.baddbmm)
- def tuned_baddbmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None):
- m, n, k, layout, mat1, mat2, inp = mm_args(mat1, mat2, inp, layout=layout)
- # options to tune from
- choices = (
- [aten_baddbmm.bind((inp, mat1, mat2), layout, alpha=alpha, beta=beta)]
- if use_aten_gemm_kernels()
- else []
- )
- if use_triton_template(layout):
- for config in mm_configs(m, n, k):
- bmm_template.maybe_append_choice(
- choices,
- input_nodes=(inp, mat1, mat2),
- layout=layout,
- **mm_options(config, m, n, k, layout),
- prefix_args=1,
- epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta),
- )
- return autotune_select_algorithm("baddbmm", choices, [inp, mat1, mat2], layout)
|