| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- # mypy: allow-untyped-defs
- """
- This file provides a number of "global" variables/handlers that are actually
- thread local and dynamically scoped, with Inductor patching them to various
- implementations depending on the situation.
- These handlers are interacted with in a fairly stylized way. Typically,
- we will import V from this module::
- from .virtualized import V
- Various handlers are accessible as attributes on this module; for example,
- you might access ``V.graph.sizevars.size_hint`` to resolve a size hint associated with
- a number.
- There are a few distinct usage patterns for virtualized global variables:
- 1. Implicit argument passing. Examples: ``V.current_node``, ``V.aot_compilation``.
- Use ``V.set_current_node`` to change what the current node is while we're
- executing some region of code, so code inside that region can query ``V.current_node``
- to find out what it is. This is often more convenient than manually threading
- the current node as an argument through all call stacks.
- 2. Per-compilation global state. Examples: ``V.fake_mode``, ``V.graph``. For a
- given ``compile_fx`` invocation, these typically don't change, but they are
- associated with some internal state so they cannot just be global functions.
- We install these objects at the beginning of compilation and then you can
- conveniently access them without having to pass them around.
- 3. Alternate define-by-run interpretations. Examples: ``V.ops``, ``V.kernel``.
- A commonly used IR in Inductor is define-by-run: instead of maintaining
- explicit syntax data structures, we instead represent loop bodies as
- callable functions, which internally invoke operations defined on
- ``V.ops``. To perform semantic analysis, print or code generate these
- operations, we dynamically patch ``V.ops`` with an alternate handler with
- the intended semantics and then run the callable function. For example, to
- extract out a traditional (FX) graph representation of the define-by-run
- IR, simply install a handler that records each ``ops`` call to a graph.
- TODO: Define a parent class / protocol that defines all of the operations
- V.ops is expected to support.
- It is typically an error to access a virtualized global without having installed
- an appropriate handler (you will get a NullHandler), although in some cases we
- provide a default implementation.
- One last thing: although most virtualized globals are accessed via ``V``, ``ops`` is
- ubiquitous enough to have its own top level variable, so you will typically see
- ``ops.constant(...)`` rather than ``V.ops.constant(...)``. In fact, these are not
- equivalent; the former interface supports arithmetic overloads like ``x + y``
- instead of forcing ``ops.add(x, y)``, so it should be preferred.
- Some operators are seemingly unused, but they are implicitly used by ops_wrapper.
- In particular, we typically have an operator for every basic pointwise PyTorch operation
- supported.
- """
- from __future__ import annotations
- from contextlib import AbstractContextManager, contextmanager
- from threading import local
- from typing import Any, Callable, Generic, List, Type, TYPE_CHECKING, TypeVar, Union
- from .ops_handler import ( # noqa: F401
- KernelFormatterHandler,
- MockHandler,
- OpsHandler,
- ReductionType,
- StoreMode,
- WrapperHandler,
- )
- if TYPE_CHECKING:
- import torch
- from torch._inductor.debug import DebugContext
- from torch._inductor.graph import GraphLowering
- from torch._inductor.ir import InterpreterShim
- from torch._subclasses import FakeTensorMode
- threadlocal = local()
- T = TypeVar("T")
- class NullHandler:
- """
- Sentinel indicating that a global variable is unset ala None. Typically,
- attempting to access the global variable before it's set is an error, but with
- NullHandler it won't fail until you try to access an attribute on it.
- """
- pass
- class Virtualized(Generic[T]):
- """
- Implements a global variable that redirects via thread local variable
- (NB: construct this class to create the global variable; this is not
- a singleton class!)
- This allows us to swap in different op implementations in codegen.
- NB: Despite the fact that we typically call these "handlers" (e.g., NullHandler is
- the default value of the variable), we sometimes use these variables to
- store other things, like booleans.
- """
- def __init__(self, vname: str, default: Union[Callable[[], T], Type[NullHandler]]):
- self._key: str = f"__torchinductor_{vname}"
- self._default = default
- def _set_handler(self, value: T) -> AbstractContextManager[None]:
- prior = self._get_handler()
- setattr(threadlocal, self._key, value)
- @contextmanager
- def ctx():
- try:
- yield
- finally:
- self._set_handler(prior)
- return ctx()
- def _get_handler(self) -> T:
- try:
- return getattr(threadlocal, self._key)
- except AttributeError:
- # TODO: To be honest, I feel we probably should just error in this
- # case, instead of making a null handler that will probably error
- # when you getattr on it
- return self._default() # type: ignore[return-value]
- def __getattr__(self, name: str) -> Any:
- return getattr(self._get_handler(), name)
- class NullKernelHandler(NullHandler):
- """
- We need access `V.kernel.removed_buffers` in DeferredLine class when there
- is no kernel in the context. This happens when codegening the wrapper.
- Initialize `removed_buffers` and `inplaced_to_remove` explicitly so we don't
- need call 'getattr' with default value which is error prone to typo in
- attribute name.
- """
- def __init__(self):
- super().__init__()
- self.removed_buffers = set()
- self.inplaced_to_remove = set()
- self.index_dtype = "tl.int64"
- _ops: Virtualized[OpsHandler[Any]] = Virtualized("ops", MockHandler)
- _graph: Virtualized[GraphLowering] = Virtualized("graph", NullHandler)
- _real_inputs: Virtualized[List[torch.Tensor]] = Virtualized("real_inputs", NullHandler)
- _fake_mode: Virtualized[FakeTensorMode] = Virtualized("fake_mode", NullHandler)
- _kernel: Virtualized[NullKernelHandler] = Virtualized(
- "kernel", NullKernelHandler
- ) # TODO: improve type
- _debug: Virtualized[DebugContext] = Virtualized("debug", NullHandler)
- _interpreter: Virtualized[InterpreterShim] = Virtualized("interpreter", NullHandler)
- _aot_compilation: Virtualized[bool] = Virtualized("aot_compilation", NullHandler)
- _current_node: Virtualized[torch.fx.Node] = Virtualized("current_node", NullHandler)
- class OpsValue:
- """The return type of most ops calls.
- This exists so we can overload magic methods, and write mathematical
- expressions much more fluently. So instead of
- ops.add(ops.mul(ops.mul(ops.sub(ops.mul(_Ap2, x), _Ap3), x), x), _1)
- we can write
- (_Ap2 * x - _Ap3) * x * x + _1
- """
- value: Any
- def __init__(self, value):
- self.value = value
- def __str__(self):
- return str(self.value)
- def __repr__(self):
- return f"OpsValue({self.value!r})"
- def __add__(self, other):
- return ops.add(self, other)
- def __mul__(self, other):
- return ops.mul(self, other)
- def __sub__(self, other):
- return ops.sub(self, other)
- def __neg__(self):
- return ops.neg(self)
- def __truediv__(self, other):
- return ops.truediv(self, other)
- def __floordiv__(self, other):
- return ops.floordiv(self, other)
- def __mod__(self, other):
- return ops.mod(self, other)
- def __pow__(self, other):
- return ops.pow(self, other)
- def __lt__(self, other):
- return ops.lt(self, other)
- def __le__(self, other):
- return ops.le(self, other)
- def __eq__(self, other):
- return ops.eq(self, other)
- def __ne__(self, other):
- return ops.ne(self, other)
- def __gt__(self, other):
- return ops.gt(self, other)
- def __ge__(self, other):
- return ops.ge(self, other)
- def __and__(self, other):
- return ops.bitwise_and(self, other)
- def __or__(self, other):
- return ops.bitwise_or(self, other)
- def __xor__(self, other):
- return ops.bitwise_xor(self, other)
- def __invert__(self):
- return ops.bitwise_not(self)
- def __rshfit__(self, n):
- return ops.bitwise_right_shift(self, n)
- def __lshift__(self, n):
- return ops.bitwise_left_shift(self, n)
- class OpsWrapper:
- """This wraps any returned IR values into an `OpsValue` instance, so that we
- can overload the magic methods for writing mathematical expressions fluently.
- """
- def __getattr__(self, name):
- def inner(*args, **kwargs):
- new_args = [OpsWrapper._unwrap(a) for a in args]
- new_kwargs = {k: OpsWrapper._unwrap(v) for k, v in kwargs.items()}
- return OpsWrapper._wrap(getattr(_ops, name)(*new_args, **new_kwargs))
- return inner
- @staticmethod
- def _unwrap(x):
- if isinstance(x, (list, tuple)):
- return tuple(OpsWrapper._unwrap(v) for v in x)
- if isinstance(x, OpsValue):
- return x.value
- return x
- @staticmethod
- def _wrap(x):
- if isinstance(x, (list, tuple)):
- return tuple(OpsValue(v) for v in x)
- return OpsValue(x)
- @staticmethod
- def indirect_indexing(index, size, check=True):
- # Returns a sympy value, not IR value
- index = OpsWrapper._unwrap(index)
- return _ops.indirect_indexing(index, size, check)
- ops = OpsWrapper()
- class _V:
- MockHandler = MockHandler
- KernelFormatterHandler = KernelFormatterHandler
- WrapperHandler = WrapperHandler
- set_ops_handler: Callable[[Any], Any] = _ops._set_handler
- get_ops_handler: Callable[[], Any] = _ops._get_handler
- set_graph_handler: Callable[[GraphLowering], Any] = _graph._set_handler
- set_real_inputs: Callable[[Any], Any] = _real_inputs._set_handler
- get_real_inputs: Callable[[], Any] = _real_inputs._get_handler
- set_fake_mode: Callable[[Any], Any] = _fake_mode._set_handler
- get_fake_mode: Callable[[], Any] = _fake_mode._get_handler
- set_kernel_handler: Callable[[Any], Any] = _kernel._set_handler
- set_debug_handler: Callable[[Any], Any] = _debug._set_handler
- set_interpreter_handler: Callable[[Any], Any] = _interpreter._set_handler
- set_aot_compilation: Callable[[bool], Any] = _aot_compilation._set_handler
- get_aot_compilation: Callable[[], Any] = _aot_compilation._get_handler
- set_current_node: Callable[[Any], Any] = _current_node._set_handler
- get_current_node: Callable[[], Any] = _current_node._get_handler
- @property
- def ops(self) -> OpsHandler[Any]:
- """The operator handler specific to the current codegen task"""
- return _ops._get_handler()
- @property
- def graph(self) -> GraphLowering:
- """The graph currently being generated"""
- return _graph._get_handler()
- @property
- def real_inputs(self):
- """non-fake example inputs"""
- return _real_inputs._get_handler()
- @property
- def fake_mode(self):
- """The graph currently being generated"""
- return _fake_mode._get_handler()
- @property
- def kernel(self):
- """The kernel currently being generated"""
- return _kernel._get_handler()
- @property
- def debug(self):
- return _debug._get_handler()
- @property
- def interpreter(self):
- return _interpreter._get_handler()
- @property
- def aot_compilation(self):
- return _aot_compilation._get_handler()
- @property
- def current_node(self):
- return _current_node._get_handler()
- V = _V()
|