| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- # mypy: allow-untyped-defs
- import inspect
- import weakref
- from typing import (
- Any,
- Callable,
- Dict,
- Iterable,
- Iterator,
- List,
- Optional,
- Sequence,
- Tuple,
- Union,
- )
- from torch.utils._exposed_in import exposed_in
- from .. import _C, _library, _ops, autograd, library, Tensor
- from . import utils
- device_types_t = Optional[Union[str, Sequence[str]]]
- @exposed_in("torch.library")
- def custom_op(
- name: str,
- fn: Optional[Callable] = None,
- /,
- *,
- mutates_args: Iterable[str],
- device_types: device_types_t = None,
- schema: Optional[str] = None,
- ) -> Callable:
- """Wraps a function into custom operator.
- Reasons why you may want to create a custom op include:
- - Wrapping a third-party library or custom kernel to work with PyTorch
- subsystems like Autograd.
- - Preventing torch.compile/export/FX tracing from peeking inside your function.
- This API is used as a decorator around a function (please see examples).
- The provided function must have type hints; these are needed to interface
- with PyTorch's various subsystems.
- Args:
- name (str): A name for the custom op that looks like "{namespace}::{name}",
- e.g. "mylib::my_linear". The name is used as the op's stable identifier
- in PyTorch subsystems (e.g. torch.export, FX graphs).
- To avoid name collisions, please use your project name as the namespace;
- e.g. all custom ops in pytorch/fbgemm use "fbgemm" as the namespace.
- mutates_args (Iterable[str]): The names of args that the function mutates.
- This MUST be accurate, otherwise, the behavior is undefined.
- device_types (None | str | Sequence[str]): The device type(s) the function
- is valid for. If no device type is provided, then the function
- is used as the default implementation for all device types.
- Examples: "cpu", "cuda".
- schema (None | str): A schema string for the operator. If None
- (recommended) we'll infer a schema for the operator from its type
- annotations. We recommend letting us infer a schema unless you
- have a specific reason not to.
- Example: "(Tensor x, int y) -> (Tensor, Tensor)".
- .. note::
- We recommend not passing in a ``schema`` arg and instead letting us infer
- it from the type annotations. It is error-prone to write your own schema.
- You may wish to provide your own schema if our interpretation of
- the type annotation is not what you want.
- For more info on how to write a schema string, see
- `here <https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#func>`_
- Examples::
- >>> import torch
- >>> from torch import Tensor
- >>> from torch.library import custom_op
- >>> import numpy as np
- >>>
- >>> @custom_op("mylib::numpy_sin", mutates_args=())
- >>> def numpy_sin(x: Tensor) -> Tensor:
- >>> x_np = x.cpu().numpy()
- >>> y_np = np.sin(x_np)
- >>> return torch.from_numpy(y_np).to(device=x.device)
- >>>
- >>> x = torch.randn(3)
- >>> y = numpy_sin(x)
- >>> assert torch.allclose(y, x.sin())
- >>>
- >>> # Example of a custom op that only works for one device type.
- >>> @custom_op("mylib::numpy_sin_cpu", mutates_args=(), device_types="cpu")
- >>> def numpy_sin_cpu(x: Tensor) -> Tensor:
- >>> x_np = x.numpy()
- >>> y_np = np.sin(x_np)
- >>> return torch.from_numpy(y_np)
- >>>
- >>> x = torch.randn(3)
- >>> y = numpy_sin_cpu(x)
- >>> assert torch.allclose(y, x.sin())
- >>>
- >>> # Example of a custom op that mutates an input
- >>> @custom_op("mylib::numpy_sin_inplace", mutates_args={"x"}, device_types="cpu")
- >>> def numpy_sin_inplace(x: Tensor) -> None:
- >>> x_np = x.numpy()
- >>> np.sin(x_np, out=x_np)
- >>>
- >>> x = torch.randn(3)
- >>> expected = x.sin()
- >>> numpy_sin_inplace(x)
- >>> assert torch.allclose(x, expected)
- """
- def inner(fn):
- import torch
- if schema is None:
- import torch._custom_op.impl
- schema_str = torch._custom_op.impl.infer_schema(fn, mutates_args)
- else:
- schema_str = schema
- namespace, opname = name.split("::")
- result = CustomOpDef(namespace, opname, schema_str, fn)
- if schema is not None:
- # Check that schema's alias annotations match those of `mutates_args`.
- expected = set()
- for arg in result._opoverload._schema.arguments:
- if arg.alias_info is not None and arg.alias_info.is_write:
- expected.add(arg.name)
- if expected != set(mutates_args):
- raise ValueError(
- f"Attempted to create a custom op with `mutates_args={mutates_args}` "
- f"and `schema={schema}. The schema suggests that the op mutates {expected}"
- f"which is different from what was provided to us in `mutates_args`. "
- f"Please make these consistent."
- )
- result.register_kernel(device_types)(fn)
- return result
- if fn is None:
- return inner
- return inner(fn)
- class CustomOpDef:
- """CustomOpDef is a wrapper around a function that turns it into a custom op.
- It has various methods for registering additional behavior for this
- custom op.
- You should not instantiate CustomOpDef directly; instead, use the
- :func:`torch.library.custom_op` API.
- """
- def __init__(self, namespace: str, name: str, schema: str, fn: Callable) -> None:
- # Fields used to interface with the PyTorch dispatcher
- self._namespace = namespace
- self._name = name
- self._schema = schema
- self._init_fn = fn
- self._backend_fns: Dict[Union[str, None], Callable] = {}
- self._abstract_fn: Optional[Callable] = None
- self._setup_context_fn: Optional[Callable] = None
- self._backward_fn: Optional[Callable] = None
- self._lib = get_library_allowing_overwrite(self._namespace, self._name)
- self._register_to_dispatcher()
- OPDEFS[self._qualname] = self
- @property
- def _qualname(self) -> str:
- return f"{self._namespace}::{self._name}"
- def __repr__(self) -> str:
- return f"<CustomOpDef({self._qualname})>"
- def register_kernel(
- self, device_types: device_types_t, fn: Optional[Callable] = None, /
- ) -> Callable:
- """Register an implementation for a device type for this operator.
- Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
- This API may be used as a decorator.
- Args:
- fn (Callable): The function to register as the implementation for
- the given device types.
- device_types (str | Sequence[str]): The device device_types to register an impl to.
- Examples::
- >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
- >>> import torch
- >>> from torch import Tensor
- >>> from torch.library import custom_op
- >>> import numpy as np
- >>>
- >>> # Create a custom op that works on cpu
- >>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
- >>> def numpy_sin(x: Tensor) -> Tensor:
- >>> x_np = x.numpy()
- >>> y_np = np.sin(x_np)
- >>> return torch.from_numpy(y_np)
- >>>
- >>> # Add implementations for the cuda device
- >>> @numpy_sin.register_kernel("cuda")
- >>> def _(x):
- >>> x_np = x.cpu().numpy()
- >>> y_np = np.sin(x_np)
- >>> return torch.from_numpy(y_np).to(device=x.device)
- >>>
- >>> x_cpu = torch.randn(3)
- >>> x_cuda = x_cpu.cuda()
- >>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
- >>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
- """
- def inner(fn):
- if device_types is None or isinstance(device_types, str):
- dtypes: List[Union[str, None]] = [device_types]
- else:
- dtypes = list(device_types)
- for device_type in dtypes:
- if device_type not in self._backend_fns:
- def backend_impl(*args, **kwargs):
- # Checks the assumption that outputs cannot alias
- # inputs or other outputs.
- storages = {
- id(tensor.untyped_storage())
- for tensor in iter_tensors(args, kwargs)
- }
- result = self._backend_fns[device_type](*args, **kwargs)
- tuple_result = result
- if not isinstance(result, tuple):
- tuple_result = (result,)
- for tensor in iter_tensors(tuple_result, {}):
- key = id(tensor.untyped_storage())
- if id(tensor.untyped_storage()) in storages:
- fn = self._backend_fns[device_type]
- module = inspect.getmodule(fn)
- raise RuntimeError(
- f"Tensors returned from custom ops (1) must not "
- f"be inputs to the custom op and (2) may not alias "
- f"any inputs or other returns. Please clone the "
- f"the offending output tensors (e.g. output.clone()) "
- f"or refactor your code. "
- f"Offending op: {self._name} (with implementation in {module})"
- )
- storages.add(key)
- return result
- if device_type is None:
- self._lib.impl(
- self._name, backend_impl, "CompositeExplicitAutograd"
- )
- else:
- self._lib.impl(
- self._name,
- backend_impl,
- _C._dispatch_key_for_device(device_type),
- )
- self._backend_fns[device_type] = fn
- return fn
- # See NOTE: [Supporting decorator and non-decorator usage]
- if fn is None:
- return inner
- return inner(fn)
- def register_fake(self, fn: Callable, /) -> Callable:
- r"""Register a FakeTensor implementation for this custom op.
- This is necessary to get the operator to work efficiently with torch.compile.
- The Fake impl (sometimes also known as a meta kernel or abstract impl)
- specifies the behavior of this operator on Tensors that carry no data.
- Given some input Tensors with certain properties
- (sizes/strides/storage_offset/device), it specifies what the properties of
- the output Tensors are.
- Please see :func:`torch.library.impl_abstract` for more details.
- Args:
- fn (Callable): The function to register as the FakeTensor
- implementation.
- Examples:
- >>> import torch
- >>> import numpy as np
- >>> from torch import Tensor
- >>>
- >>> # Example 1: an operator without data-dependent output shape
- >>> @torch.library.custom_op("mylib::linear", mutates_args=())
- >>> def linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
- >>> return (x @ weight.t()) + bias
- >>>
- >>> @linear.register_fake
- >>> def _(x, weight, bias):
- >>> assert x.dim() == 2
- >>> assert weight.dim() == 2
- >>> assert bias.dim() == 1
- >>> assert x.shape[1] == weight.shape[1]
- >>> assert weight.shape[0] == bias.shape[0]
- >>> assert x.device == weight.device
- >>> return x.new_empty(x.size(0), weight.size(0))
- >>>
- >>> x = torch.randn(2, 2)
- >>> weight = torch.randn(2, 2)
- >>> bias = torch.randn(2)
- >>> # xdoctest: +SKIP("Requires Python <= 3.11")
- >>> out = torch.compile(linear, fullgraph=True)(x, weight, bias)
- >>> # xdoctest: +SKIP("Requires Python <= 3.11")
- >>> assert torch.allclose(out, torch.nn.functional.linear(x, weight, bias))
- >>>
- >>> # Example 2: an operator with data-dependent output shape
- >>> @torch.library.custom_op("mylib::nonzero", mutates_args=())
- >>> def nonzero(x: Tensor) -> Tensor:
- >>> x_np = x.cpu().numpy()
- >>> res = np.stack(np.nonzero(x_np), axis=1)
- >>> return torch.tensor(res, device=x.device)
- >>>
- >>> @nonzero.register_fake
- >>> def _(x):
- >>> # Number of nonzero-elements is data-dependent.
- >>> # Since we cannot peek at the data in an abstract impl,
- >>> # we use the ctx object to construct a new symint that
- >>> # represents the data-dependent size.
- >>> ctx = torch.library.get_ctx()
- >>> nnz = ctx.new_dynamic_size()
- >>> shape = [nnz, x.dim()]
- >>> result = x.new_empty(shape, dtype=torch.int64)
- >>> return result
- >>>
- >>> x = torch.tensor([0, 1, 2, 0, 0, 1])
- >>> # xdoctest: +SKIP("Requires Python <= 3.11")
- >>> out = torch.compile(nonzero, fullgraph=True)(x)
- >>> # xdoctest: +SKIP("Requires Python <= 3.11")
- >>> assert torch.allclose(out, x.nonzero())
- """
- self._abstract_fn = fn
- return fn
- def register_autograd(
- self,
- backward: Callable,
- /,
- *,
- setup_context: Optional[Callable] = None,
- ) -> None:
- r"""Register a backward formula for this custom op.
- In order for an operator to work with autograd, you need to register
- a backward formula:
- 1. You must tell us how to compute gradients during the backward pass
- by providing us a "backward" function.
- 2. If you need any values from the forward to compute gradients, you can
- use `setup_context` to save values for backward.
- ``backward_fn`` runs during the backward pass. It accepts ``(ctx, *grads)``:
- - ``grads`` is one or more gradients. The number of gradients matches
- the number of outputs of the operator.
- The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
- :class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
- same as :meth:`torch.autograd.Function.backward`.
- ``setup_context(ctx, inputs, output)`` runs during the forward pass.
- Please save quantities needed for backward onto the ``ctx`` object via
- either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
- or assigning them as attributes of ``ctx``. If your custom op has
- kwarg-only arguments, we expect the signature of ``setup_context``
- to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
- Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
- they may not directly access :meth:`torch.Tensor.data_ptr` and they must
- not depend on or mutate global state. If you need a non-traceable backward,
- you can make it a separate custom_op that you call inside ``backward_fn``.
- Examples:
- >>> import torch
- >>> import numpy as np
- >>> from torch import Tensor
- >>>
- >>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
- >>> def numpy_sin(x: Tensor) -> Tensor:
- >>> x_np = x.cpu().numpy()
- >>> y_np = np.sin(x_np)
- >>> return torch.from_numpy(y_np).to(device=x.device)
- >>>
- >>> def setup_context(ctx, inputs, output) -> Tensor:
- >>> x, = inputs
- >>> ctx.save_for_backward(x)
- >>>
- >>> def backward(ctx, grad):
- >>> x, = ctx.saved_tensors
- >>> return grad * x.cos()
- >>>
- >>> numpy_sin.register_autograd(backward, setup_context=setup_context)
- >>>
- >>> x = torch.randn(3, requires_grad=True)
- >>> y = numpy_sin(x)
- >>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
- >>> assert torch.allclose(grad_x, x.cos())
- >>>
- >>> # Example with a keyword-only arg
- >>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
- >>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
- >>> x_np = x.cpu().numpy()
- >>> y_np = x_np * val
- >>> return torch.from_numpy(y_np).to(device=x.device)
- >>>
- >>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
- >>> ctx.val = keyword_only_inputs["val"]
- >>>
- >>> def backward(ctx, grad):
- >>> return grad * ctx.val
- >>>
- >>> numpy_mul.register_autograd(backward, setup_context=setup_context)
- >>>
- >>> x = torch.randn(3, requires_grad=True)
- >>> y = numpy_mul(x, val=3.14)
- >>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
- >>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
- """
- schema = self._opoverload._schema
- if not _library.utils.is_functional_schema(schema):
- raise RuntimeError(
- f"Cannot register autograd formula for non-functional operator "
- f"{self} with schema {schema}. Please create "
- f"a functional operator and register an autograd formula for that."
- )
- self._backward_fn = backward
- self._setup_context_fn = setup_context
- def _register_to_dispatcher(self) -> None:
- lib = self._lib
- schema_str = self._name + self._schema
- cpp_schema = _C.parse_schema(schema_str)
- if utils.has_kwarg_only_tensors(cpp_schema):
- # If you want to support this, the progression is:
- # - supporting kwarg-only Tensors that are non-differentiable
- # - supporting kwarg-only Tensors (regardless of differentiability)
- raise NotImplementedError(
- f"custom_op with kwarg-only Tensor args. Please make your "
- f"tensors not kwarg-only. Got: {schema_str}"
- )
- lib.define(
- schema_str,
- tags=[_C.Tag.pt2_compliant_tag, _C.Tag.needs_fixed_stride_order],
- )
- self._opoverload = _library.utils.lookup_op(self._qualname)
- def fake_impl(*args, **kwargs):
- if self._abstract_fn is None:
- if _library.utils.can_generate_trivial_fake_impl(self._opoverload):
- return None
- raise RuntimeError(
- f"There was no fake impl registered for {self}. "
- f"This is necessary for torch.compile/export/fx tracing to work. "
- f"Please use `{self._init_fn.__name__}.register_fake` to add an "
- f"fake impl."
- )
- return self._abstract_fn(*args, **kwargs)
- lib._register_fake(self._name, fake_impl, _stacklevel=4)
- autograd_impl = _library.autograd.make_autograd_impl(self._opoverload, self)
- lib.impl(self._name, autograd_impl, "Autograd", with_keyset=True)
- schema = self._opoverload._schema
- if schema.is_mutable:
- def adinplaceorview_impl(keyset, *args, **kwargs):
- for arg, val in _library.utils.zip_schema(schema, args, kwargs):
- if not arg.alias_info:
- continue
- if not arg.alias_info.is_write:
- continue
- if isinstance(val, Tensor):
- autograd.graph.increment_version(val)
- elif isinstance(val, (tuple, list)):
- for v in val:
- if isinstance(v, Tensor):
- autograd.graph.increment_version(v)
- with _C._AutoDispatchBelowADInplaceOrView():
- return self._opoverload.redispatch(
- keyset & _C._after_ADInplaceOrView_keyset, *args, **kwargs
- )
- lib.impl(
- self._name,
- adinplaceorview_impl,
- "ADInplaceOrView",
- with_keyset=True,
- )
- def __call__(self, *args, **kwargs):
- return self._opoverload(*args, **kwargs)
- # NOTE: [Supporting decorator and non-decorator usage]
- #
- # Some APIs may be both used as a decorator and not as a decorator.
- # For example:
- #
- # >>> def fn(x):
- # >>> return x.sin()
- # >>>
- # >>> # Usage 1: not as a decorator
- # >>> numpy_sin.register_kernel("cuda", fn)
- # >>>
- # >>> # Usage 2: as a decorator
- # >>> @numpy_sin.register_kernel("cuda")
- # >>> def fn2(x):
- # >>> return x.sin
- #
- # The way we support this is that `register_kernel` accepts an optional `fn`.
- # If `fn` is provided (Usage 1), then we know that the user is using it not
- # as a decorator.
- # If `fn` is not provided (Usage 2), then `register_kernel` needs to return a
- # decorator.
- OPDEF_TO_LIB: Dict[str, "library.Library"] = {}
- OPDEFS: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
- def get_library_allowing_overwrite(namespace: str, name: str) -> "library.Library":
- qualname = f"{namespace}::{name}"
- if qualname in OPDEF_TO_LIB:
- OPDEF_TO_LIB[qualname]._destroy()
- del OPDEF_TO_LIB[qualname]
- lib = library.Library(namespace, "FRAGMENT")
- OPDEF_TO_LIB[qualname] = lib
- return lib
- def iter_tensors(
- args: Tuple[Any], kwargs: Dict[str, Any], allowed_nesting: int = 1
- ) -> Iterator[Tensor]:
- def check(arg):
- if isinstance(arg, Tensor):
- yield arg
- elif allowed_nesting > 0 and isinstance(arg, (tuple, list)):
- yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1)
- for arg in args:
- yield from check(arg)
- for kwarg in kwargs.values():
- yield from check(kwarg)
- def _maybe_get_opdef(
- op: Union[CustomOpDef, _ops.OpOverload, str]
- ) -> Optional[CustomOpDef]:
- if isinstance(op, CustomOpDef):
- return op
- if isinstance(op, _ops.OpOverload):
- op = op._name
- assert isinstance(op, str)
- if op in OPDEFS:
- return OPDEFS[op]
- return None
|