| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # mypy: allow-untyped-defs
- """Various linear algebra utility methods for internal use.
- """
- from typing import Optional, Tuple
- import torch
- from torch import Tensor
- def is_sparse(A):
- """Check if tensor A is a sparse tensor"""
- if isinstance(A, torch.Tensor):
- return A.layout == torch.sparse_coo
- error_str = "expected Tensor"
- if not torch.jit.is_scripting():
- error_str += f" but got {type(A)}"
- raise TypeError(error_str)
- def get_floating_dtype(A):
- """Return the floating point dtype of tensor A.
- Integer types map to float32.
- """
- dtype = A.dtype
- if dtype in (torch.float16, torch.float32, torch.float64):
- return dtype
- return torch.float32
- def matmul(A: Optional[Tensor], B: Tensor) -> Tensor:
- """Multiply two matrices.
- If A is None, return B. A can be sparse or dense. B is always
- dense.
- """
- if A is None:
- return B
- if is_sparse(A):
- return torch.sparse.mm(A, B)
- return torch.matmul(A, B)
- def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor:
- """Return bilinear form of matrices: :math:`X^T A Y`."""
- return matmul(X.mT, matmul(A, Y))
- def qform(A: Optional[Tensor], S: Tensor):
- """Return quadratic form :math:`S^T A S`."""
- return bform(S, A, S)
- def basis(A):
- """Return orthogonal basis of A columns."""
- return torch.linalg.qr(A).Q
- def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]:
- """Return eigenpairs of A with specified ordering."""
- if largest is None:
- largest = False
- E, Z = torch.linalg.eigh(A, UPLO="U")
- # assuming that E is ordered
- if largest:
- E = torch.flip(E, dims=(-1,))
- Z = torch.flip(Z, dims=(-1,))
- return E, Z
- # These functions were deprecated and removed
- # This nice error message can be removed in version 1.13+
- def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor:
- raise RuntimeError(
- "This function was deprecated since version 1.9 and is now removed.\n"
- "Please use the `torch.linalg.matrix_rank` function instead. "
- "The parameter 'symmetric' was renamed in `torch.linalg.matrix_rank()` to 'hermitian'."
- )
- def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
- raise RuntimeError(
- "This function was deprecated since version 1.9 and is now removed. "
- "`torch.solve` is deprecated in favor of `torch.linalg.solve`. "
- "`torch.linalg.solve` has its arguments reversed and does not return the LU factorization.\n\n"
- "To get the LU factorization see `torch.lu`, which can be used with `torch.lu_solve` or `torch.lu_unpack`.\n"
- "X = torch.solve(B, A).solution "
- "should be replaced with:\n"
- "X = torch.linalg.solve(A, B)"
- )
- def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
- raise RuntimeError(
- "This function was deprecated since version 1.9 and is now removed. "
- "`torch.lstsq` is deprecated in favor of `torch.linalg.lstsq`.\n"
- "`torch.linalg.lstsq` has reversed arguments and does not return the QR decomposition in "
- "the returned tuple (although it returns other information about the problem).\n\n"
- "To get the QR decomposition consider using `torch.linalg.qr`.\n\n"
- "The returned solution in `torch.lstsq` stored the residuals of the solution in the "
- "last m - n columns of the returned value whenever m > n. In torch.linalg.lstsq, "
- "the residuals are in the field 'residuals' of the returned named tuple.\n\n"
- "The unpacking of the solution, as in\n"
- "X, _ = torch.lstsq(B, A).solution[:A.size(1)]\n"
- "should be replaced with:\n"
- "X = torch.linalg.lstsq(A, B).solution"
- )
- def _symeig(
- input, eigenvectors=False, upper=True, *, out=None
- ) -> Tuple[Tensor, Tensor]:
- raise RuntimeError(
- "This function was deprecated since version 1.9 and is now removed. "
- "The default behavior has changed from using the upper triangular portion of the matrix by default "
- "to using the lower triangular portion.\n\n"
- "L, _ = torch.symeig(A, upper=upper) "
- "should be replaced with:\n"
- "L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L')\n\n"
- "and\n\n"
- "L, V = torch.symeig(A, eigenvectors=True) "
- "should be replaced with:\n"
- "L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L')"
- )
- def eig(
- self: Tensor, eigenvectors: bool = False, *, e=None, v=None
- ) -> Tuple[Tensor, Tensor]:
- raise RuntimeError(
- "This function was deprecated since version 1.9 and is now removed. "
- "`torch.linalg.eig` returns complex tensors of dtype `cfloat` or `cdouble` rather than real tensors "
- "mimicking complex tensors.\n\n"
- "L, _ = torch.eig(A) "
- "should be replaced with:\n"
- "L_complex = torch.linalg.eigvals(A)\n\n"
- "and\n\n"
- "L, V = torch.eig(A, eigenvectors=True) "
- "should be replaced with:\n"
- "L_complex, V_complex = torch.linalg.eig(A)"
- )
|