| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390 |
- # mypy: ignore-errors
- """
- Utility function to facilitate testing.
- """
- import contextlib
- import gc
- import operator
- import os
- import platform
- import pprint
- import re
- import shutil
- import sys
- import warnings
- from functools import wraps
- from io import StringIO
- from tempfile import mkdtemp, mkstemp
- from warnings import WarningMessage
- import torch._numpy as np
- from torch._numpy import arange, asarray as asanyarray, empty, float32, intp, ndarray
- __all__ = [
- "assert_equal",
- "assert_almost_equal",
- "assert_approx_equal",
- "assert_array_equal",
- "assert_array_less",
- "assert_string_equal",
- "assert_",
- "assert_array_almost_equal",
- "build_err_msg",
- "decorate_methods",
- "print_assert_equal",
- "verbose",
- "assert_",
- "assert_array_almost_equal_nulp",
- "assert_raises_regex",
- "assert_array_max_ulp",
- "assert_warns",
- "assert_no_warnings",
- "assert_allclose",
- "IgnoreException",
- "clear_and_catch_warnings",
- "temppath",
- "tempdir",
- "IS_PYPY",
- "HAS_REFCOUNT",
- "IS_WASM",
- "suppress_warnings",
- "assert_array_compare",
- "assert_no_gc_cycles",
- "break_cycles",
- "IS_PYSTON",
- ]
- verbose = 0
- IS_WASM = platform.machine() in ["wasm32", "wasm64"]
- IS_PYPY = sys.implementation.name == "pypy"
- IS_PYSTON = hasattr(sys, "pyston_version_info")
- HAS_REFCOUNT = getattr(sys, "getrefcount", None) is not None and not IS_PYSTON
- def assert_(val, msg=""):
- """
- Assert that works in release mode.
- Accepts callable msg to allow deferring evaluation until failure.
- The Python built-in ``assert`` does not work when executing code in
- optimized mode (the ``-O`` flag) - no byte-code is generated for it.
- For documentation on usage, refer to the Python documentation.
- """
- __tracebackhide__ = True # Hide traceback for py.test
- if not val:
- try:
- smsg = msg()
- except TypeError:
- smsg = msg
- raise AssertionError(smsg)
- def gisnan(x):
- return np.isnan(x)
- def gisfinite(x):
- return np.isfinite(x)
- def gisinf(x):
- return np.isinf(x)
- def build_err_msg(
- arrays,
- err_msg,
- header="Items are not equal:",
- verbose=True,
- names=("ACTUAL", "DESIRED"),
- precision=8,
- ):
- msg = ["\n" + header]
- if err_msg:
- if err_msg.find("\n") == -1 and len(err_msg) < 79 - len(header):
- msg = [msg[0] + " " + err_msg]
- else:
- msg.append(err_msg)
- if verbose:
- for i, a in enumerate(arrays):
- if isinstance(a, ndarray):
- # precision argument is only needed if the objects are ndarrays
- # r_func = partial(array_repr, precision=precision)
- r_func = ndarray.__repr__
- else:
- r_func = repr
- try:
- r = r_func(a)
- except Exception as exc:
- r = f"[repr failed for <{type(a).__name__}>: {exc}]"
- if r.count("\n") > 3:
- r = "\n".join(r.splitlines()[:3])
- r += "..."
- msg.append(f" {names[i]}: {r}")
- return "\n".join(msg)
- def assert_equal(actual, desired, err_msg="", verbose=True):
- """
- Raises an AssertionError if two objects are not equal.
- Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
- check that all elements of these objects are equal. An exception is raised
- at the first conflicting values.
- When one of `actual` and `desired` is a scalar and the other is array_like,
- the function checks that each element of the array_like object is equal to
- the scalar.
- This function handles NaN comparisons as if NaN was a "normal" number.
- That is, AssertionError is not raised if both objects have NaNs in the same
- positions. This is in contrast to the IEEE standard on NaNs, which says
- that NaN compared to anything must return False.
- Parameters
- ----------
- actual : array_like
- The object to check.
- desired : array_like
- The expected object.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired are not equal.
- Examples
- --------
- >>> np.testing.assert_equal([4,5], [4,6])
- Traceback (most recent call last):
- ...
- AssertionError:
- Items are not equal:
- item=1
- ACTUAL: 5
- DESIRED: 6
- The following comparison does not raise an exception. There are NaNs
- in the inputs, but they are in the same positions.
- >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan])
- """
- __tracebackhide__ = True # Hide traceback for py.test
- num_nones = sum([actual is None, desired is None])
- if num_nones == 1:
- raise AssertionError(f"Not equal: {actual} != {desired}")
- elif num_nones == 2:
- return True
- # else, carry on
- if isinstance(actual, np.DType) or isinstance(desired, np.DType):
- result = actual == desired
- if not result:
- raise AssertionError(f"Not equal: {actual} != {desired}")
- else:
- return True
- if isinstance(desired, str) and isinstance(actual, str):
- assert actual == desired
- return
- if isinstance(desired, dict):
- if not isinstance(actual, dict):
- raise AssertionError(repr(type(actual)))
- assert_equal(len(actual), len(desired), err_msg, verbose)
- for k in desired.keys():
- if k not in actual:
- raise AssertionError(repr(k))
- assert_equal(actual[k], desired[k], f"key={k!r}\n{err_msg}", verbose)
- return
- if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
- assert_equal(len(actual), len(desired), err_msg, verbose)
- for k in range(len(desired)):
- assert_equal(actual[k], desired[k], f"item={k!r}\n{err_msg}", verbose)
- return
- from torch._numpy import imag, iscomplexobj, isscalar, ndarray, real, signbit
- if isinstance(actual, ndarray) or isinstance(desired, ndarray):
- return assert_array_equal(actual, desired, err_msg, verbose)
- msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
- # Handle complex numbers: separate into real/imag to handle
- # nan/inf/negative zero correctly
- # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
- try:
- usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
- except (ValueError, TypeError):
- usecomplex = False
- if usecomplex:
- if iscomplexobj(actual):
- actualr = real(actual)
- actuali = imag(actual)
- else:
- actualr = actual
- actuali = 0
- if iscomplexobj(desired):
- desiredr = real(desired)
- desiredi = imag(desired)
- else:
- desiredr = desired
- desiredi = 0
- try:
- assert_equal(actualr, desiredr)
- assert_equal(actuali, desiredi)
- except AssertionError:
- raise AssertionError(msg) # noqa: B904
- # isscalar test to check cases such as [np.nan] != np.nan
- if isscalar(desired) != isscalar(actual):
- raise AssertionError(msg)
- # Inf/nan/negative zero handling
- try:
- isdesnan = gisnan(desired)
- isactnan = gisnan(actual)
- if isdesnan and isactnan:
- return # both nan, so equal
- # handle signed zero specially for floats
- array_actual = np.asarray(actual)
- array_desired = np.asarray(desired)
- if desired == 0 and actual == 0:
- if not signbit(desired) == signbit(actual):
- raise AssertionError(msg)
- except (TypeError, ValueError, NotImplementedError):
- pass
- try:
- # Explicitly use __eq__ for comparison, gh-2552
- if not (desired == actual):
- raise AssertionError(msg)
- except (DeprecationWarning, FutureWarning) as e:
- # this handles the case when the two types are not even comparable
- if "elementwise == comparison" in e.args[0]:
- raise AssertionError(msg) # noqa: B904
- else:
- raise
- def print_assert_equal(test_string, actual, desired):
- """
- Test if two objects are equal, and print an error message if test fails.
- The test is performed with ``actual == desired``.
- Parameters
- ----------
- test_string : str
- The message supplied to AssertionError.
- actual : object
- The object to test for equality against `desired`.
- desired : object
- The expected result.
- Examples
- --------
- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) # doctest: +SKIP
- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) # doctest: +SKIP
- Traceback (most recent call last):
- ...
- AssertionError: Test XYZ of func xyz failed
- ACTUAL:
- [0, 1]
- DESIRED:
- [0, 2]
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import pprint
- if not (actual == desired):
- msg = StringIO()
- msg.write(test_string)
- msg.write(" failed\nACTUAL: \n")
- pprint.pprint(actual, msg)
- msg.write("DESIRED: \n")
- pprint.pprint(desired, msg)
- raise AssertionError(msg.getvalue())
- def assert_almost_equal(actual, desired, decimal=7, err_msg="", verbose=True):
- """
- Raises an AssertionError if two items are not equal up to desired
- precision.
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
- The test verifies that the elements of `actual` and `desired` satisfy.
- ``abs(desired-actual) < float64(1.5 * 10**(-decimal))``
- That is a looser test than originally documented, but agrees with what the
- actual implementation in `assert_array_almost_equal` did up to rounding
- vagaries. An exception is raised at conflicting values. For ndarrays this
- delegates to assert_array_almost_equal
- Parameters
- ----------
- actual : array_like
- The object to check.
- desired : array_like
- The expected object.
- decimal : int, optional
- Desired precision, default is 7.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
- Examples
- --------
- >>> from torch._numpy.testing import assert_almost_equal
- >>> assert_almost_equal(2.3333333333333, 2.33333334)
- >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not almost equal to 10 decimals
- ACTUAL: 2.3333333333333
- DESIRED: 2.33333334
- >>> assert_almost_equal(np.array([1.0,2.3333333333333]),
- ... np.array([1.0,2.33333334]), decimal=9)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not almost equal to 9 decimals
- <BLANKLINE>
- Mismatched elements: 1 / 2 (50%)
- Max absolute difference: 6.666699636781459e-09
- Max relative difference: 2.8571569790287484e-09
- x: torch.ndarray([1.0000, 2.3333], dtype=float64)
- y: torch.ndarray([1.0000, 2.3333], dtype=float64)
- """
- __tracebackhide__ = True # Hide traceback for py.test
- from torch._numpy import imag, iscomplexobj, ndarray, real
- # Handle complex numbers: separate into real/imag to handle
- # nan/inf/negative zero correctly
- # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
- try:
- usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
- except ValueError:
- usecomplex = False
- def _build_err_msg():
- header = "Arrays are not almost equal to %d decimals" % decimal
- return build_err_msg([actual, desired], err_msg, verbose=verbose, header=header)
- if usecomplex:
- if iscomplexobj(actual):
- actualr = real(actual)
- actuali = imag(actual)
- else:
- actualr = actual
- actuali = 0
- if iscomplexobj(desired):
- desiredr = real(desired)
- desiredi = imag(desired)
- else:
- desiredr = desired
- desiredi = 0
- try:
- assert_almost_equal(actualr, desiredr, decimal=decimal)
- assert_almost_equal(actuali, desiredi, decimal=decimal)
- except AssertionError:
- raise AssertionError(_build_err_msg()) # noqa: B904
- if isinstance(actual, (ndarray, tuple, list)) or isinstance(
- desired, (ndarray, tuple, list)
- ):
- return assert_array_almost_equal(actual, desired, decimal, err_msg)
- try:
- # If one of desired/actual is not finite, handle it specially here:
- # check that both are nan if any is a nan, and test for equality
- # otherwise
- if not (gisfinite(desired) and gisfinite(actual)):
- if gisnan(desired) or gisnan(actual):
- if not (gisnan(desired) and gisnan(actual)):
- raise AssertionError(_build_err_msg())
- else:
- if not desired == actual:
- raise AssertionError(_build_err_msg())
- return
- except (NotImplementedError, TypeError):
- pass
- if abs(desired - actual) >= np.float64(1.5 * 10.0 ** (-decimal)):
- raise AssertionError(_build_err_msg())
- def assert_approx_equal(actual, desired, significant=7, err_msg="", verbose=True):
- """
- Raises an AssertionError if two items are not equal up to significant
- digits.
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
- Given two numbers, check that they are approximately equal.
- Approximately equal is defined as the number of significant digits
- that agree.
- Parameters
- ----------
- actual : scalar
- The object to check.
- desired : scalar
- The expected object.
- significant : int, optional
- Desired precision, default is 7.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
- Examples
- --------
- >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) # doctest: +SKIP
- >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, # doctest: +SKIP
- ... significant=8)
- >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, # doctest: +SKIP
- ... significant=8)
- Traceback (most recent call last):
- ...
- AssertionError:
- Items are not equal to 8 significant digits:
- ACTUAL: 1.234567e-21
- DESIRED: 1.2345672e-21
- the evaluated condition that raises the exception is
- >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
- True
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
- (actual, desired) = map(float, (actual, desired))
- if desired == actual:
- return
- # Normalized the numbers to be in range (-10.0,10.0)
- # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
- scale = 0.5 * (np.abs(desired) + np.abs(actual))
- scale = np.power(10, np.floor(np.log10(scale)))
- try:
- sc_desired = desired / scale
- except ZeroDivisionError:
- sc_desired = 0.0
- try:
- sc_actual = actual / scale
- except ZeroDivisionError:
- sc_actual = 0.0
- msg = build_err_msg(
- [actual, desired],
- err_msg,
- header="Items are not equal to %d significant digits:" % significant,
- verbose=verbose,
- )
- try:
- # If one of desired/actual is not finite, handle it specially here:
- # check that both are nan if any is a nan, and test for equality
- # otherwise
- if not (gisfinite(desired) and gisfinite(actual)):
- if gisnan(desired) or gisnan(actual):
- if not (gisnan(desired) and gisnan(actual)):
- raise AssertionError(msg)
- else:
- if not desired == actual:
- raise AssertionError(msg)
- return
- except (TypeError, NotImplementedError):
- pass
- if np.abs(sc_desired - sc_actual) >= np.power(10.0, -(significant - 1)):
- raise AssertionError(msg)
- def assert_array_compare(
- comparison,
- x,
- y,
- err_msg="",
- verbose=True,
- header="",
- precision=6,
- equal_nan=True,
- equal_inf=True,
- *,
- strict=False,
- ):
- __tracebackhide__ = True # Hide traceback for py.test
- from torch._numpy import all, array, asarray, bool_, inf, isnan, max
- x = asarray(x)
- y = asarray(y)
- def array2string(a):
- return str(a)
- # original array for output formatting
- ox, oy = x, y
- def func_assert_same_pos(x, y, func=isnan, hasval="nan"):
- """Handling nan/inf.
- Combine results of running func on x and y, checking that they are True
- at the same locations.
- """
- __tracebackhide__ = True # Hide traceback for py.test
- x_id = func(x)
- y_id = func(y)
- # We include work-arounds here to handle three types of slightly
- # pathological ndarray subclasses:
- # (1) all() on `masked` array scalars can return masked arrays, so we
- # use != True
- # (2) __eq__ on some ndarray subclasses returns Python booleans
- # instead of element-wise comparisons, so we cast to bool_() and
- # use isinstance(..., bool) checks
- # (3) subclasses with bare-bones __array_function__ implementations may
- # not implement np.all(), so favor using the .all() method
- # We are not committed to supporting such subclasses, but it's nice to
- # support them if possible.
- if (x_id == y_id).all().item() is not True:
- msg = build_err_msg(
- [x, y],
- err_msg + f"\nx and y {hasval} location mismatch:",
- verbose=verbose,
- header=header,
- names=("x", "y"),
- precision=precision,
- )
- raise AssertionError(msg)
- # If there is a scalar, then here we know the array has the same
- # flag as it everywhere, so we should return the scalar flag.
- if isinstance(x_id, bool) or x_id.ndim == 0:
- return bool_(x_id)
- elif isinstance(y_id, bool) or y_id.ndim == 0:
- return bool_(y_id)
- else:
- return y_id
- try:
- if strict:
- cond = x.shape == y.shape and x.dtype == y.dtype
- else:
- cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
- if not cond:
- if x.shape != y.shape:
- reason = f"\n(shapes {x.shape}, {y.shape} mismatch)"
- else:
- reason = f"\n(dtypes {x.dtype}, {y.dtype} mismatch)"
- msg = build_err_msg(
- [x, y],
- err_msg + reason,
- verbose=verbose,
- header=header,
- names=("x", "y"),
- precision=precision,
- )
- raise AssertionError(msg)
- flagged = bool_(False)
- if equal_nan:
- flagged = func_assert_same_pos(x, y, func=isnan, hasval="nan")
- if equal_inf:
- flagged |= func_assert_same_pos(
- x, y, func=lambda xy: xy == +inf, hasval="+inf"
- )
- flagged |= func_assert_same_pos(
- x, y, func=lambda xy: xy == -inf, hasval="-inf"
- )
- if flagged.ndim > 0:
- x, y = x[~flagged], y[~flagged]
- # Only do the comparison if actual values are left
- if x.size == 0:
- return
- elif flagged:
- # no sense doing comparison if everything is flagged.
- return
- val = comparison(x, y)
- if isinstance(val, bool):
- cond = val
- reduced = array([val])
- else:
- reduced = val.ravel()
- cond = reduced.all()
- # The below comparison is a hack to ensure that fully masked
- # results, for which val.ravel().all() returns np.ma.masked,
- # do not trigger a failure (np.ma.masked != True evaluates as
- # np.ma.masked, which is falsy).
- if not cond:
- n_mismatch = reduced.size - int(reduced.sum(dtype=intp))
- n_elements = flagged.size if flagged.ndim != 0 else reduced.size
- percent_mismatch = 100 * n_mismatch / n_elements
- remarks = [
- f"Mismatched elements: {n_mismatch} / {n_elements} ({percent_mismatch:.3g}%)"
- ]
- # with errstate(all='ignore'):
- # ignore errors for non-numeric types
- with contextlib.suppress(TypeError, RuntimeError):
- error = abs(x - y)
- if np.issubdtype(x.dtype, np.unsignedinteger):
- error2 = abs(y - x)
- np.minimum(error, error2, out=error)
- max_abs_error = max(error)
- remarks.append(
- "Max absolute difference: " + array2string(max_abs_error.item())
- )
- # note: this definition of relative error matches that one
- # used by assert_allclose (found in np.isclose)
- # Filter values where the divisor would be zero
- nonzero = bool_(y != 0)
- if all(~nonzero):
- max_rel_error = array(inf)
- else:
- max_rel_error = max(error[nonzero] / abs(y[nonzero]))
- remarks.append(
- "Max relative difference: " + array2string(max_rel_error.item())
- )
- err_msg += "\n" + "\n".join(remarks)
- msg = build_err_msg(
- [ox, oy],
- err_msg,
- verbose=verbose,
- header=header,
- names=("x", "y"),
- precision=precision,
- )
- raise AssertionError(msg)
- except ValueError:
- import traceback
- efmt = traceback.format_exc()
- header = f"error during assertion:\n\n{efmt}\n\n{header}"
- msg = build_err_msg(
- [x, y],
- err_msg,
- verbose=verbose,
- header=header,
- names=("x", "y"),
- precision=precision,
- )
- raise ValueError(msg) # noqa: B904
- def assert_array_equal(x, y, err_msg="", verbose=True, *, strict=False):
- """
- Raises an AssertionError if two array_like objects are not equal.
- Given two array_like objects, check that the shape is equal and all
- elements of these objects are equal (but see the Notes for the special
- handling of a scalar). An exception is raised at shape mismatch or
- conflicting values. In contrast to the standard usage in numpy, NaNs
- are compared like numbers, no assertion is raised if both objects have
- NaNs in the same positions.
- The usual caution for verifying equality with floating point numbers is
- advised.
- Parameters
- ----------
- x : array_like
- The actual object to check.
- y : array_like
- The desired, expected object.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- strict : bool, optional
- If True, raise an AssertionError when either the shape or the data
- type of the array_like objects does not match. The special
- handling for scalars mentioned in the Notes section is disabled.
- Raises
- ------
- AssertionError
- If actual and desired objects are not equal.
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
- Notes
- -----
- When one of `x` and `y` is a scalar and the other is array_like, the
- function checks that each element of the array_like object is equal to
- the scalar. This behaviour can be disabled with the `strict` parameter.
- Examples
- --------
- The first assert does not raise an exception:
- >>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
- ... [np.exp(0),2.33333, np.nan])
- Use `assert_allclose` or one of the nulp (number of floating point values)
- functions for these cases instead:
- >>> np.testing.assert_allclose([1.0,np.pi,np.nan],
- ... [1, np.sqrt(np.pi)**2, np.nan],
- ... rtol=1e-10, atol=0)
- As mentioned in the Notes section, `assert_array_equal` has special
- handling for scalars. Here the test checks that each value in `x` is 3:
- >>> x = np.full((2, 5), fill_value=3)
- >>> np.testing.assert_array_equal(x, 3)
- Use `strict` to raise an AssertionError when comparing a scalar with an
- array:
- >>> np.testing.assert_array_equal(x, 3, strict=True)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not equal
- <BLANKLINE>
- (shapes (2, 5), () mismatch)
- x: torch.ndarray([[3, 3, 3, 3, 3],
- [3, 3, 3, 3, 3]])
- y: torch.ndarray(3)
- The `strict` parameter also ensures that the array data types match:
- >>> x = np.array([2, 2, 2])
- >>> y = np.array([2., 2., 2.], dtype=np.float32)
- >>> np.testing.assert_array_equal(x, y, strict=True)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not equal
- <BLANKLINE>
- (dtypes dtype("int64"), dtype("float32") mismatch)
- x: torch.ndarray([2, 2, 2])
- y: torch.ndarray([2., 2., 2.])
- """
- __tracebackhide__ = True # Hide traceback for py.test
- assert_array_compare(
- operator.__eq__,
- x,
- y,
- err_msg=err_msg,
- verbose=verbose,
- header="Arrays are not equal",
- strict=strict,
- )
- def assert_array_almost_equal(x, y, decimal=6, err_msg="", verbose=True):
- """
- Raises an AssertionError if two objects are not equal up to desired
- precision.
- .. note:: It is recommended to use one of `assert_allclose`,
- `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
- instead of this function for more consistent floating point
- comparisons.
- The test verifies identical shapes and that the elements of ``actual`` and
- ``desired`` satisfy.
- ``abs(desired-actual) < 1.5 * 10**(-decimal)``
- That is a looser test than originally documented, but agrees with what the
- actual implementation did up to rounding vagaries. An exception is raised
- at shape mismatch or conflicting values. In contrast to the standard usage
- in numpy, NaNs are compared like numbers, no assertion is raised if both
- objects have NaNs in the same positions.
- Parameters
- ----------
- x : array_like
- The actual object to check.
- y : array_like
- The desired, expected object.
- decimal : int, optional
- Desired precision, default is 6.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
- See Also
- --------
- assert_allclose: Compare two array_like objects for equality with desired
- relative and/or absolute precision.
- assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
- Examples
- --------
- the first assert does not raise an exception
- >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
- ... [1.0,2.333,np.nan])
- >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
- ... [1.0,2.33339,np.nan], decimal=5)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not almost equal to 5 decimals
- <BLANKLINE>
- Mismatched elements: 1 / 3 (33.3%)
- Max absolute difference: 5.999999999994898e-05
- Max relative difference: 2.5713661239633743e-05
- x: torch.ndarray([1.0000, 2.3333, nan], dtype=float64)
- y: torch.ndarray([1.0000, 2.3334, nan], dtype=float64)
- >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
- ... [1.0,2.33333, 5], decimal=5)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not almost equal to 5 decimals
- <BLANKLINE>
- x and y nan location mismatch:
- x: torch.ndarray([1.0000, 2.3333, nan], dtype=float64)
- y: torch.ndarray([1.0000, 2.3333, 5.0000], dtype=float64)
- """
- __tracebackhide__ = True # Hide traceback for py.test
- from torch._numpy import any as npany, float_, issubdtype, number, result_type
- def compare(x, y):
- try:
- if npany(gisinf(x)) or npany(gisinf(y)):
- xinfid = gisinf(x)
- yinfid = gisinf(y)
- if not (xinfid == yinfid).all():
- return False
- # if one item, x and y is +- inf
- if x.size == y.size == 1:
- return x == y
- x = x[~xinfid]
- y = y[~yinfid]
- except (TypeError, NotImplementedError):
- pass
- # make sure y is an inexact type to avoid abs(MIN_INT); will cause
- # casting of x later.
- dtype = result_type(y, 1.0)
- y = asanyarray(y, dtype)
- z = abs(x - y)
- if not issubdtype(z.dtype, number):
- z = z.astype(float_) # handle object arrays
- return z < 1.5 * 10.0 ** (-decimal)
- assert_array_compare(
- compare,
- x,
- y,
- err_msg=err_msg,
- verbose=verbose,
- header=("Arrays are not almost equal to %d decimals" % decimal),
- precision=decimal,
- )
- def assert_array_less(x, y, err_msg="", verbose=True):
- """
- Raises an AssertionError if two array_like objects are not ordered by less
- than.
- Given two array_like objects, check that the shape is equal and all
- elements of the first object are strictly smaller than those of the
- second object. An exception is raised at shape mismatch or incorrectly
- ordered values. Shape mismatch does not raise if an object has zero
- dimension. In contrast to the standard usage in numpy, NaNs are
- compared, no assertion is raised if both objects have NaNs in the same
- positions.
- Parameters
- ----------
- x : array_like
- The smaller object to check.
- y : array_like
- The larger object to compare.
- err_msg : string
- The error message to be printed in case of failure.
- verbose : bool
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired objects are not equal.
- See Also
- --------
- assert_array_equal: tests objects for equality
- assert_array_almost_equal: test objects for equality up to precision
- Examples
- --------
- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not less-ordered
- <BLANKLINE>
- Mismatched elements: 1 / 3 (33.3%)
- Max absolute difference: 1.0
- Max relative difference: 0.5
- x: torch.ndarray([1., 1., nan], dtype=float64)
- y: torch.ndarray([1., 2., nan], dtype=float64)
- >>> np.testing.assert_array_less([1.0, 4.0], 3)
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not less-ordered
- <BLANKLINE>
- Mismatched elements: 1 / 2 (50%)
- Max absolute difference: 2.0
- Max relative difference: 0.6666666666666666
- x: torch.ndarray([1., 4.], dtype=float64)
- y: torch.ndarray(3)
- >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
- Traceback (most recent call last):
- ...
- AssertionError:
- Arrays are not less-ordered
- <BLANKLINE>
- (shapes (3,), (1,) mismatch)
- x: torch.ndarray([1., 2., 3.], dtype=float64)
- y: torch.ndarray([4])
- """
- __tracebackhide__ = True # Hide traceback for py.test
- assert_array_compare(
- operator.__lt__,
- x,
- y,
- err_msg=err_msg,
- verbose=verbose,
- header="Arrays are not less-ordered",
- equal_inf=False,
- )
- def assert_string_equal(actual, desired):
- """
- Test if two strings are equal.
- If the given strings are equal, `assert_string_equal` does nothing.
- If they are not equal, an AssertionError is raised, and the diff
- between the strings is shown.
- Parameters
- ----------
- actual : str
- The string to test for equality against the expected string.
- desired : str
- The expected string.
- Examples
- --------
- >>> np.testing.assert_string_equal('abc', 'abc') # doctest: +SKIP
- >>> np.testing.assert_string_equal('abc', 'abcd') # doctest: +SKIP
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ...
- AssertionError: Differences in strings:
- - abc+ abcd? +
- """
- # delay import of difflib to reduce startup time
- __tracebackhide__ = True # Hide traceback for py.test
- import difflib
- if not isinstance(actual, str):
- raise AssertionError(repr(type(actual)))
- if not isinstance(desired, str):
- raise AssertionError(repr(type(desired)))
- if desired == actual:
- return
- diff = list(
- difflib.Differ().compare(actual.splitlines(True), desired.splitlines(True))
- )
- diff_list = []
- while diff:
- d1 = diff.pop(0)
- if d1.startswith(" "):
- continue
- if d1.startswith("- "):
- l = [d1]
- d2 = diff.pop(0)
- if d2.startswith("? "):
- l.append(d2)
- d2 = diff.pop(0)
- if not d2.startswith("+ "):
- raise AssertionError(repr(d2))
- l.append(d2)
- if diff:
- d3 = diff.pop(0)
- if d3.startswith("? "):
- l.append(d3)
- else:
- diff.insert(0, d3)
- if d2[2:] == d1[2:]:
- continue
- diff_list.extend(l)
- continue
- raise AssertionError(repr(d1))
- if not diff_list:
- return
- msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}"
- if actual != desired:
- raise AssertionError(msg)
- import unittest
- class _Dummy(unittest.TestCase):
- def nop(self):
- pass
- _d = _Dummy("nop")
- def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs):
- """
- assert_raises_regex(exception_class, expected_regexp, callable, *args,
- **kwargs)
- assert_raises_regex(exception_class, expected_regexp)
- Fail unless an exception of class exception_class and with message that
- matches expected_regexp is thrown by callable when invoked with arguments
- args and keyword arguments kwargs.
- Alternatively, can be used as a context manager like `assert_raises`.
- Notes
- -----
- .. versionadded:: 1.9.0
- """
- __tracebackhide__ = True # Hide traceback for py.test
- return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs)
- def decorate_methods(cls, decorator, testmatch=None):
- """
- Apply a decorator to all methods in a class matching a regular expression.
- The given decorator is applied to all public methods of `cls` that are
- matched by the regular expression `testmatch`
- (``testmatch.search(methodname)``). Methods that are private, i.e. start
- with an underscore, are ignored.
- Parameters
- ----------
- cls : class
- Class whose methods to decorate.
- decorator : function
- Decorator to apply to methods
- testmatch : compiled regexp or str, optional
- The regular expression. Default value is None, in which case the
- nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
- is used.
- If `testmatch` is a string, it is compiled to a regular expression
- first.
- """
- if testmatch is None:
- testmatch = re.compile(rf"(?:^|[\\b_\\.{os.sep}-])[Tt]est")
- else:
- testmatch = re.compile(testmatch)
- cls_attr = cls.__dict__
- # delayed import to reduce startup time
- from inspect import isfunction
- methods = [_m for _m in cls_attr.values() if isfunction(_m)]
- for function in methods:
- try:
- if hasattr(function, "compat_func_name"):
- funcname = function.compat_func_name
- else:
- funcname = function.__name__
- except AttributeError:
- # not a function
- continue
- if testmatch.search(funcname) and not funcname.startswith("_"):
- setattr(cls, funcname, decorator(function))
- return
- def _assert_valid_refcount(op):
- """
- Check that ufuncs don't mishandle refcount of object `1`.
- Used in a few regression tests.
- """
- if not HAS_REFCOUNT:
- return True
- import gc
- import numpy as np
- b = np.arange(100 * 100).reshape(100, 100)
- c = b
- i = 1
- gc.disable()
- try:
- rc = sys.getrefcount(i)
- for j in range(15):
- d = op(b, c)
- assert_(sys.getrefcount(i) >= rc)
- finally:
- gc.enable()
- del d # for pyflakes
- def assert_allclose(
- actual,
- desired,
- rtol=1e-7,
- atol=0,
- equal_nan=True,
- err_msg="",
- verbose=True,
- check_dtype=False,
- ):
- """
- Raises an AssertionError if two objects are not equal up to desired
- tolerance.
- Given two array_like objects, check that their shapes and all elements
- are equal (but see the Notes for the special handling of a scalar). An
- exception is raised if the shapes mismatch or any values conflict. In
- contrast to the standard usage in numpy, NaNs are compared like numbers,
- no assertion is raised if both objects have NaNs in the same positions.
- The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note
- that ``allclose`` has different default values). It compares the difference
- between `actual` and `desired` to ``atol + rtol * abs(desired)``.
- .. versionadded:: 1.5.0
- Parameters
- ----------
- actual : array_like
- Array obtained.
- desired : array_like
- Array desired.
- rtol : float, optional
- Relative tolerance.
- atol : float, optional
- Absolute tolerance.
- equal_nan : bool, optional.
- If True, NaNs will compare equal.
- err_msg : str, optional
- The error message to be printed in case of failure.
- verbose : bool, optional
- If True, the conflicting values are appended to the error message.
- Raises
- ------
- AssertionError
- If actual and desired are not equal up to specified precision.
- See Also
- --------
- assert_array_almost_equal_nulp, assert_array_max_ulp
- Notes
- -----
- When one of `actual` and `desired` is a scalar and the other is
- array_like, the function checks that each element of the array_like
- object is equal to the scalar.
- Examples
- --------
- >>> x = [1e-5, 1e-3, 1e-1]
- >>> y = np.arccos(np.cos(x))
- >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0)
- """
- __tracebackhide__ = True # Hide traceback for py.test
- def compare(x, y):
- return np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
- actual, desired = asanyarray(actual), asanyarray(desired)
- header = f"Not equal to tolerance rtol={rtol:g}, atol={atol:g}"
- if check_dtype:
- assert actual.dtype == desired.dtype
- assert_array_compare(
- compare,
- actual,
- desired,
- err_msg=str(err_msg),
- verbose=verbose,
- header=header,
- equal_nan=equal_nan,
- )
- def assert_array_almost_equal_nulp(x, y, nulp=1):
- """
- Compare two arrays relatively to their spacing.
- This is a relatively robust method to compare two arrays whose amplitude
- is variable.
- Parameters
- ----------
- x, y : array_like
- Input arrays.
- nulp : int, optional
- The maximum number of unit in the last place for tolerance (see Notes).
- Default is 1.
- Returns
- -------
- None
- Raises
- ------
- AssertionError
- If the spacing between `x` and `y` for one or more elements is larger
- than `nulp`.
- See Also
- --------
- assert_array_max_ulp : Check that all items of arrays differ in at most
- N Units in the Last Place.
- spacing : Return the distance between x and the nearest adjacent number.
- Notes
- -----
- An assertion is raised if the following condition is not met::
- abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y)))
- Examples
- --------
- >>> x = np.array([1., 1e-10, 1e-20])
- >>> eps = np.finfo(x.dtype).eps
- >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) # doctest: +SKIP
- >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) # doctest: +SKIP
- Traceback (most recent call last):
- ...
- AssertionError: X and Y are not equal to 1 ULP (max is 2)
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
- ax = np.abs(x)
- ay = np.abs(y)
- ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
- if not np.all(np.abs(x - y) <= ref):
- if np.iscomplexobj(x) or np.iscomplexobj(y):
- msg = "X and Y are not equal to %d ULP" % nulp
- else:
- max_nulp = np.max(nulp_diff(x, y))
- msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp)
- raise AssertionError(msg)
- def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
- """
- Check that all items of arrays differ in at most N Units in the Last Place.
- Parameters
- ----------
- a, b : array_like
- Input arrays to be compared.
- maxulp : int, optional
- The maximum number of units in the last place that elements of `a` and
- `b` can differ. Default is 1.
- dtype : dtype, optional
- Data-type to convert `a` and `b` to if given. Default is None.
- Returns
- -------
- ret : ndarray
- Array containing number of representable floating point numbers between
- items in `a` and `b`.
- Raises
- ------
- AssertionError
- If one or more elements differ by more than `maxulp`.
- Notes
- -----
- For computing the ULP difference, this API does not differentiate between
- various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
- is zero).
- See Also
- --------
- assert_array_almost_equal_nulp : Compare two arrays relatively to their
- spacing.
- Examples
- --------
- >>> a = np.linspace(0., 1., 100)
- >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) # doctest: +SKIP
- """
- __tracebackhide__ = True # Hide traceback for py.test
- import numpy as np
- ret = nulp_diff(a, b, dtype)
- if not np.all(ret <= maxulp):
- raise AssertionError(
- f"Arrays are not almost equal up to {maxulp:g} "
- f"ULP (max difference is {np.max(ret):g} ULP)"
- )
- return ret
- def nulp_diff(x, y, dtype=None):
- """For each item in x and y, return the number of representable floating
- points between them.
- Parameters
- ----------
- x : array_like
- first input array
- y : array_like
- second input array
- dtype : dtype, optional
- Data-type to convert `x` and `y` to if given. Default is None.
- Returns
- -------
- nulp : array_like
- number of representable floating point numbers between each item in x
- and y.
- Notes
- -----
- For computing the ULP difference, this API does not differentiate between
- various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
- is zero).
- Examples
- --------
- # By definition, epsilon is the smallest number such as 1 + eps != 1, so
- # there should be exactly one ULP between 1 and 1 + eps
- >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) # doctest: +SKIP
- 1.0
- """
- import numpy as np
- if dtype:
- x = np.asarray(x, dtype=dtype)
- y = np.asarray(y, dtype=dtype)
- else:
- x = np.asarray(x)
- y = np.asarray(y)
- t = np.common_type(x, y)
- if np.iscomplexobj(x) or np.iscomplexobj(y):
- raise NotImplementedError("_nulp not implemented for complex array")
- x = np.array([x], dtype=t)
- y = np.array([y], dtype=t)
- x[np.isnan(x)] = np.nan
- y[np.isnan(y)] = np.nan
- if not x.shape == y.shape:
- raise ValueError(f"x and y do not have the same shape: {x.shape} - {y.shape}")
- def _diff(rx, ry, vdt):
- diff = np.asarray(rx - ry, dtype=vdt)
- return np.abs(diff)
- rx = integer_repr(x)
- ry = integer_repr(y)
- return _diff(rx, ry, t)
- def _integer_repr(x, vdt, comp):
- # Reinterpret binary representation of the float as sign-magnitude:
- # take into account two-complement representation
- # See also
- # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
- rx = x.view(vdt)
- if not (rx.size == 1):
- rx[rx < 0] = comp - rx[rx < 0]
- else:
- if rx < 0:
- rx = comp - rx
- return rx
- def integer_repr(x):
- """Return the signed-magnitude interpretation of the binary representation
- of x."""
- import numpy as np
- if x.dtype == np.float16:
- return _integer_repr(x, np.int16, np.int16(-(2**15)))
- elif x.dtype == np.float32:
- return _integer_repr(x, np.int32, np.int32(-(2**31)))
- elif x.dtype == np.float64:
- return _integer_repr(x, np.int64, np.int64(-(2**63)))
- else:
- raise ValueError(f"Unsupported dtype {x.dtype}")
- @contextlib.contextmanager
- def _assert_warns_context(warning_class, name=None):
- __tracebackhide__ = True # Hide traceback for py.test
- with suppress_warnings() as sup:
- l = sup.record(warning_class)
- yield
- if not len(l) > 0:
- name_str = f" when calling {name}" if name is not None else ""
- raise AssertionError("No warning raised" + name_str)
- def assert_warns(warning_class, *args, **kwargs):
- """
- Fail unless the given callable throws the specified warning.
- A warning of class warning_class should be thrown by the callable when
- invoked with arguments args and keyword arguments kwargs.
- If a different type of warning is thrown, it will not be caught.
- If called with all arguments other than the warning class omitted, may be
- used as a context manager:
- with assert_warns(SomeWarning):
- do_something()
- The ability to be used as a context manager is new in NumPy v1.11.0.
- .. versionadded:: 1.4.0
- Parameters
- ----------
- warning_class : class
- The class defining the warning that `func` is expected to throw.
- func : callable, optional
- Callable to test
- *args : Arguments
- Arguments for `func`.
- **kwargs : Kwargs
- Keyword arguments for `func`.
- Returns
- -------
- The value returned by `func`.
- Examples
- --------
- >>> import warnings
- >>> def deprecated_func(num):
- ... warnings.warn("Please upgrade", DeprecationWarning)
- ... return num*num
- >>> with np.testing.assert_warns(DeprecationWarning):
- ... assert deprecated_func(4) == 16
- >>> # or passing a func
- >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4)
- >>> assert ret == 16
- """
- if not args:
- return _assert_warns_context(warning_class)
- func = args[0]
- args = args[1:]
- with _assert_warns_context(warning_class, name=func.__name__):
- return func(*args, **kwargs)
- @contextlib.contextmanager
- def _assert_no_warnings_context(name=None):
- __tracebackhide__ = True # Hide traceback for py.test
- with warnings.catch_warnings(record=True) as l:
- warnings.simplefilter("always")
- yield
- if len(l) > 0:
- name_str = f" when calling {name}" if name is not None else ""
- raise AssertionError(f"Got warnings{name_str}: {l}")
- def assert_no_warnings(*args, **kwargs):
- """
- Fail if the given callable produces any warnings.
- If called with all arguments omitted, may be used as a context manager:
- with assert_no_warnings():
- do_something()
- The ability to be used as a context manager is new in NumPy v1.11.0.
- .. versionadded:: 1.7.0
- Parameters
- ----------
- func : callable
- The callable to test.
- \\*args : Arguments
- Arguments passed to `func`.
- \\*\\*kwargs : Kwargs
- Keyword arguments passed to `func`.
- Returns
- -------
- The value returned by `func`.
- """
- if not args:
- return _assert_no_warnings_context()
- func = args[0]
- args = args[1:]
- with _assert_no_warnings_context(name=func.__name__):
- return func(*args, **kwargs)
- def _gen_alignment_data(dtype=float32, type="binary", max_size=24):
- """
- generator producing data with different alignment and offsets
- to test simd vectorization
- Parameters
- ----------
- dtype : dtype
- data type to produce
- type : string
- 'unary': create data for unary operations, creates one input
- and output array
- 'binary': create data for unary operations, creates two input
- and output array
- max_size : integer
- maximum size of data to produce
- Returns
- -------
- if type is 'unary' yields one output, one input array and a message
- containing information on the data
- if type is 'binary' yields one output array, two input array and a message
- containing information on the data
- """
- ufmt = "unary offset=(%d, %d), size=%d, dtype=%r, %s"
- bfmt = "binary offset=(%d, %d, %d), size=%d, dtype=%r, %s"
- for o in range(3):
- for s in range(o + 2, max(o + 3, max_size)):
- if type == "unary":
- def inp():
- return arange(s, dtype=dtype)[o:]
- out = empty((s,), dtype=dtype)[o:]
- yield out, inp(), ufmt % (o, o, s, dtype, "out of place")
- d = inp()
- yield d, d, ufmt % (o, o, s, dtype, "in place")
- yield out[1:], inp()[:-1], ufmt % (
- o + 1,
- o,
- s - 1,
- dtype,
- "out of place",
- )
- yield out[:-1], inp()[1:], ufmt % (
- o,
- o + 1,
- s - 1,
- dtype,
- "out of place",
- )
- yield inp()[:-1], inp()[1:], ufmt % (o, o + 1, s - 1, dtype, "aliased")
- yield inp()[1:], inp()[:-1], ufmt % (o + 1, o, s - 1, dtype, "aliased")
- if type == "binary":
- def inp1():
- return arange(s, dtype=dtype)[o:]
- inp2 = inp1
- out = empty((s,), dtype=dtype)[o:]
- yield out, inp1(), inp2(), bfmt % (o, o, o, s, dtype, "out of place")
- d = inp1()
- yield d, d, inp2(), bfmt % (o, o, o, s, dtype, "in place1")
- d = inp2()
- yield d, inp1(), d, bfmt % (o, o, o, s, dtype, "in place2")
- yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % (
- o + 1,
- o,
- o,
- s - 1,
- dtype,
- "out of place",
- )
- yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % (
- o,
- o + 1,
- o,
- s - 1,
- dtype,
- "out of place",
- )
- yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % (
- o,
- o,
- o + 1,
- s - 1,
- dtype,
- "out of place",
- )
- yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % (
- o + 1,
- o,
- o,
- s - 1,
- dtype,
- "aliased",
- )
- yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % (
- o,
- o + 1,
- o,
- s - 1,
- dtype,
- "aliased",
- )
- yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % (
- o,
- o,
- o + 1,
- s - 1,
- dtype,
- "aliased",
- )
- class IgnoreException(Exception):
- "Ignoring this exception due to disabled feature"
- @contextlib.contextmanager
- def tempdir(*args, **kwargs):
- """Context manager to provide a temporary test folder.
- All arguments are passed as this to the underlying tempfile.mkdtemp
- function.
- """
- tmpdir = mkdtemp(*args, **kwargs)
- try:
- yield tmpdir
- finally:
- shutil.rmtree(tmpdir)
- @contextlib.contextmanager
- def temppath(*args, **kwargs):
- """Context manager for temporary files.
- Context manager that returns the path to a closed temporary file. Its
- parameters are the same as for tempfile.mkstemp and are passed directly
- to that function. The underlying file is removed when the context is
- exited, so it should be closed at that time.
- Windows does not allow a temporary file to be opened if it is already
- open, so the underlying file must be closed after opening before it
- can be opened again.
- """
- fd, path = mkstemp(*args, **kwargs)
- os.close(fd)
- try:
- yield path
- finally:
- os.remove(path)
- class clear_and_catch_warnings(warnings.catch_warnings):
- """Context manager that resets warning registry for catching warnings
- Warnings can be slippery, because, whenever a warning is triggered, Python
- adds a ``__warningregistry__`` member to the *calling* module. This makes
- it impossible to retrigger the warning in this module, whatever you put in
- the warnings filters. This context manager accepts a sequence of `modules`
- as a keyword argument to its constructor and:
- * stores and removes any ``__warningregistry__`` entries in given `modules`
- on entry;
- * resets ``__warningregistry__`` to its previous state on exit.
- This makes it possible to trigger any warning afresh inside the context
- manager without disturbing the state of warnings outside.
- For compatibility with Python 3.0, please consider all arguments to be
- keyword-only.
- Parameters
- ----------
- record : bool, optional
- Specifies whether warnings should be captured by a custom
- implementation of ``warnings.showwarning()`` and be appended to a list
- returned by the context manager. Otherwise None is returned by the
- context manager. The objects appended to the list are arguments whose
- attributes mirror the arguments to ``showwarning()``.
- modules : sequence, optional
- Sequence of modules for which to reset warnings registry on entry and
- restore on exit. To work correctly, all 'ignore' filters should
- filter by one of these modules.
- Examples
- --------
- >>> import warnings
- >>> with np.testing.clear_and_catch_warnings( # doctest: +SKIP
- ... modules=[np.core.fromnumeric]):
- ... warnings.simplefilter('always')
- ... warnings.filterwarnings('ignore', module='np.core.fromnumeric')
- ... # do something that raises a warning but ignore those in
- ... # np.core.fromnumeric
- """
- class_modules = ()
- def __init__(self, record=False, modules=()):
- self.modules = set(modules).union(self.class_modules)
- self._warnreg_copies = {}
- super().__init__(record=record)
- def __enter__(self):
- for mod in self.modules:
- if hasattr(mod, "__warningregistry__"):
- mod_reg = mod.__warningregistry__
- self._warnreg_copies[mod] = mod_reg.copy()
- mod_reg.clear()
- return super().__enter__()
- def __exit__(self, *exc_info):
- super().__exit__(*exc_info)
- for mod in self.modules:
- if hasattr(mod, "__warningregistry__"):
- mod.__warningregistry__.clear()
- if mod in self._warnreg_copies:
- mod.__warningregistry__.update(self._warnreg_copies[mod])
- class suppress_warnings:
- """
- Context manager and decorator doing much the same as
- ``warnings.catch_warnings``.
- However, it also provides a filter mechanism to work around
- https://bugs.python.org/issue4180.
- This bug causes Python before 3.4 to not reliably show warnings again
- after they have been ignored once (even within catch_warnings). It
- means that no "ignore" filter can be used easily, since following
- tests might need to see the warning. Additionally it allows easier
- specificity for testing warnings and can be nested.
- Parameters
- ----------
- forwarding_rule : str, optional
- One of "always", "once", "module", or "location". Analogous to
- the usual warnings module filter mode, it is useful to reduce
- noise mostly on the outmost level. Unsuppressed and unrecorded
- warnings will be forwarded based on this rule. Defaults to "always".
- "location" is equivalent to the warnings "default", match by exact
- location the warning warning originated from.
- Notes
- -----
- Filters added inside the context manager will be discarded again
- when leaving it. Upon entering all filters defined outside a
- context will be applied automatically.
- When a recording filter is added, matching warnings are stored in the
- ``log`` attribute as well as in the list returned by ``record``.
- If filters are added and the ``module`` keyword is given, the
- warning registry of this module will additionally be cleared when
- applying it, entering the context, or exiting it. This could cause
- warnings to appear a second time after leaving the context if they
- were configured to be printed once (default) and were already
- printed before the context was entered.
- Nesting this context manager will work as expected when the
- forwarding rule is "always" (default). Unfiltered and unrecorded
- warnings will be passed out and be matched by the outer level.
- On the outmost level they will be printed (or caught by another
- warnings context). The forwarding rule argument can modify this
- behaviour.
- Like ``catch_warnings`` this context manager is not threadsafe.
- Examples
- --------
- With a context manager::
- with np.testing.suppress_warnings() as sup:
- sup.filter(DeprecationWarning, "Some text")
- sup.filter(module=np.ma.core)
- log = sup.record(FutureWarning, "Does this occur?")
- command_giving_warnings()
- # The FutureWarning was given once, the filtered warnings were
- # ignored. All other warnings abide outside settings (may be
- # printed/error)
- assert_(len(log) == 1)
- assert_(len(sup.log) == 1) # also stored in log attribute
- Or as a decorator::
- sup = np.testing.suppress_warnings()
- sup.filter(module=np.ma.core) # module must match exactly
- @sup
- def some_function():
- # do something which causes a warning in np.ma.core
- pass
- """
- def __init__(self, forwarding_rule="always"):
- self._entered = False
- # Suppressions are either instance or defined inside one with block:
- self._suppressions = []
- if forwarding_rule not in {"always", "module", "once", "location"}:
- raise ValueError("unsupported forwarding rule.")
- self._forwarding_rule = forwarding_rule
- def _clear_registries(self):
- if hasattr(warnings, "_filters_mutated"):
- # clearing the registry should not be necessary on new pythons,
- # instead the filters should be mutated.
- warnings._filters_mutated()
- return
- # Simply clear the registry, this should normally be harmless,
- # note that on new pythons it would be invalidated anyway.
- for module in self._tmp_modules:
- if hasattr(module, "__warningregistry__"):
- module.__warningregistry__.clear()
- def _filter(self, category=Warning, message="", module=None, record=False):
- if record:
- record = [] # The log where to store warnings
- else:
- record = None
- if self._entered:
- if module is None:
- warnings.filterwarnings("always", category=category, message=message)
- else:
- module_regex = module.__name__.replace(".", r"\.") + "$"
- warnings.filterwarnings(
- "always", category=category, message=message, module=module_regex
- )
- self._tmp_modules.add(module)
- self._clear_registries()
- self._tmp_suppressions.append(
- (category, message, re.compile(message, re.I), module, record)
- )
- else:
- self._suppressions.append(
- (category, message, re.compile(message, re.I), module, record)
- )
- return record
- def filter(self, category=Warning, message="", module=None):
- """
- Add a new suppressing filter or apply it if the state is entered.
- Parameters
- ----------
- category : class, optional
- Warning class to filter
- message : string, optional
- Regular expression matching the warning message.
- module : module, optional
- Module to filter for. Note that the module (and its file)
- must match exactly and cannot be a submodule. This may make
- it unreliable for external modules.
- Notes
- -----
- When added within a context, filters are only added inside
- the context and will be forgotten when the context is exited.
- """
- self._filter(category=category, message=message, module=module, record=False)
- def record(self, category=Warning, message="", module=None):
- """
- Append a new recording filter or apply it if the state is entered.
- All warnings matching will be appended to the ``log`` attribute.
- Parameters
- ----------
- category : class, optional
- Warning class to filter
- message : string, optional
- Regular expression matching the warning message.
- module : module, optional
- Module to filter for. Note that the module (and its file)
- must match exactly and cannot be a submodule. This may make
- it unreliable for external modules.
- Returns
- -------
- log : list
- A list which will be filled with all matched warnings.
- Notes
- -----
- When added within a context, filters are only added inside
- the context and will be forgotten when the context is exited.
- """
- return self._filter(
- category=category, message=message, module=module, record=True
- )
- def __enter__(self):
- if self._entered:
- raise RuntimeError("cannot enter suppress_warnings twice.")
- self._orig_show = warnings.showwarning
- self._filters = warnings.filters
- warnings.filters = self._filters[:]
- self._entered = True
- self._tmp_suppressions = []
- self._tmp_modules = set()
- self._forwarded = set()
- self.log = [] # reset global log (no need to keep same list)
- for cat, mess, _, mod, log in self._suppressions:
- if log is not None:
- del log[:] # clear the log
- if mod is None:
- warnings.filterwarnings("always", category=cat, message=mess)
- else:
- module_regex = mod.__name__.replace(".", r"\.") + "$"
- warnings.filterwarnings(
- "always", category=cat, message=mess, module=module_regex
- )
- self._tmp_modules.add(mod)
- warnings.showwarning = self._showwarning
- self._clear_registries()
- return self
- def __exit__(self, *exc_info):
- warnings.showwarning = self._orig_show
- warnings.filters = self._filters
- self._clear_registries()
- self._entered = False
- del self._orig_show
- del self._filters
- def _showwarning(
- self, message, category, filename, lineno, *args, use_warnmsg=None, **kwargs
- ):
- for cat, _, pattern, mod, rec in (self._suppressions + self._tmp_suppressions)[
- ::-1
- ]:
- if issubclass(category, cat) and pattern.match(message.args[0]) is not None:
- if mod is None:
- # Message and category match, either recorded or ignored
- if rec is not None:
- msg = WarningMessage(
- message, category, filename, lineno, **kwargs
- )
- self.log.append(msg)
- rec.append(msg)
- return
- # Use startswith, because warnings strips the c or o from
- # .pyc/.pyo files.
- elif mod.__file__.startswith(filename):
- # The message and module (filename) match
- if rec is not None:
- msg = WarningMessage(
- message, category, filename, lineno, **kwargs
- )
- self.log.append(msg)
- rec.append(msg)
- return
- # There is no filter in place, so pass to the outside handler
- # unless we should only pass it once
- if self._forwarding_rule == "always":
- if use_warnmsg is None:
- self._orig_show(message, category, filename, lineno, *args, **kwargs)
- else:
- self._orig_showmsg(use_warnmsg)
- return
- if self._forwarding_rule == "once":
- signature = (message.args, category)
- elif self._forwarding_rule == "module":
- signature = (message.args, category, filename)
- elif self._forwarding_rule == "location":
- signature = (message.args, category, filename, lineno)
- if signature in self._forwarded:
- return
- self._forwarded.add(signature)
- if use_warnmsg is None:
- self._orig_show(message, category, filename, lineno, *args, **kwargs)
- else:
- self._orig_showmsg(use_warnmsg)
- def __call__(self, func):
- """
- Function decorator to apply certain suppressions to a whole
- function.
- """
- @wraps(func)
- def new_func(*args, **kwargs):
- with self:
- return func(*args, **kwargs)
- return new_func
- @contextlib.contextmanager
- def _assert_no_gc_cycles_context(name=None):
- __tracebackhide__ = True # Hide traceback for py.test
- # not meaningful to test if there is no refcounting
- if not HAS_REFCOUNT:
- yield
- return
- assert_(gc.isenabled())
- gc.disable()
- gc_debug = gc.get_debug()
- try:
- for i in range(100):
- if gc.collect() == 0:
- break
- else:
- raise RuntimeError(
- "Unable to fully collect garbage - perhaps a __del__ method "
- "is creating more reference cycles?"
- )
- gc.set_debug(gc.DEBUG_SAVEALL)
- yield
- # gc.collect returns the number of unreachable objects in cycles that
- # were found -- we are checking that no cycles were created in the context
- n_objects_in_cycles = gc.collect()
- objects_in_cycles = gc.garbage[:]
- finally:
- del gc.garbage[:]
- gc.set_debug(gc_debug)
- gc.enable()
- if n_objects_in_cycles:
- name_str = f" when calling {name}" if name is not None else ""
- raise AssertionError(
- "Reference cycles were found{}: {} objects were collected, "
- "of which {} are shown below:{}".format(
- name_str,
- n_objects_in_cycles,
- len(objects_in_cycles),
- "".join(
- "\n {} object with id={}:\n {}".format(
- type(o).__name__,
- id(o),
- pprint.pformat(o).replace("\n", "\n "),
- )
- for o in objects_in_cycles
- ),
- )
- )
- def assert_no_gc_cycles(*args, **kwargs):
- """
- Fail if the given callable produces any reference cycles.
- If called with all arguments omitted, may be used as a context manager:
- with assert_no_gc_cycles():
- do_something()
- .. versionadded:: 1.15.0
- Parameters
- ----------
- func : callable
- The callable to test.
- \\*args : Arguments
- Arguments passed to `func`.
- \\*\\*kwargs : Kwargs
- Keyword arguments passed to `func`.
- Returns
- -------
- Nothing. The result is deliberately discarded to ensure that all cycles
- are found.
- """
- if not args:
- return _assert_no_gc_cycles_context()
- func = args[0]
- args = args[1:]
- with _assert_no_gc_cycles_context(name=func.__name__):
- func(*args, **kwargs)
- def break_cycles():
- """
- Break reference cycles by calling gc.collect
- Objects can call other objects' methods (for instance, another object's
- __del__) inside their own __del__. On PyPy, the interpreter only runs
- between calls to gc.collect, so multiple calls are needed to completely
- release all cycles.
- """
- gc.collect()
- if IS_PYPY:
- # a few more, just to make sure all the finalizers are called
- gc.collect()
- gc.collect()
- gc.collect()
- gc.collect()
- def requires_memory(free_bytes):
- """Decorator to skip a test if not enough memory is available"""
- import pytest
- def decorator(func):
- @wraps(func)
- def wrapper(*a, **kw):
- msg = check_free_memory(free_bytes)
- if msg is not None:
- pytest.skip(msg)
- try:
- return func(*a, **kw)
- except MemoryError:
- # Probably ran out of memory regardless: don't regard as failure
- pytest.xfail("MemoryError raised")
- return wrapper
- return decorator
- def check_free_memory(free_bytes):
- """
- Check whether `free_bytes` amount of memory is currently free.
- Returns: None if enough memory available, otherwise error message
- """
- env_var = "NPY_AVAILABLE_MEM"
- env_value = os.environ.get(env_var)
- if env_value is not None:
- try:
- mem_free = _parse_size(env_value)
- except ValueError as exc:
- raise ValueError( # noqa: B904
- f"Invalid environment variable {env_var}: {exc}"
- )
- msg = (
- f"{free_bytes/1e9} GB memory required, but environment variable "
- f"NPY_AVAILABLE_MEM={env_value} set"
- )
- else:
- mem_free = _get_mem_available()
- if mem_free is None:
- msg = (
- "Could not determine available memory; set NPY_AVAILABLE_MEM "
- "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run "
- "the test."
- )
- mem_free = -1
- else:
- msg = (
- f"{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available"
- )
- return msg if mem_free < free_bytes else None
- def _parse_size(size_str):
- """Convert memory size strings ('12 GB' etc.) to float"""
- suffixes = {
- "": 1,
- "b": 1,
- "k": 1000,
- "m": 1000**2,
- "g": 1000**3,
- "t": 1000**4,
- "kb": 1000,
- "mb": 1000**2,
- "gb": 1000**3,
- "tb": 1000**4,
- "kib": 1024,
- "mib": 1024**2,
- "gib": 1024**3,
- "tib": 1024**4,
- }
- size_re = re.compile(
- r"^\s*(\d+|\d+\.\d+)\s*({})\s*$".format("|".join(suffixes.keys())), re.I
- )
- m = size_re.match(size_str.lower())
- if not m or m.group(2) not in suffixes:
- raise ValueError(f"value {size_str!r} not a valid size")
- return int(float(m.group(1)) * suffixes[m.group(2)])
- def _get_mem_available():
- """Return available memory in bytes, or None if unknown."""
- try:
- import psutil
- return psutil.virtual_memory().available
- except (ImportError, AttributeError):
- pass
- if sys.platform.startswith("linux"):
- info = {}
- with open("/proc/meminfo") as f:
- for line in f:
- p = line.split()
- info[p[0].strip(":").lower()] = int(p[1]) * 1024
- if "memavailable" in info:
- # Linux >= 3.14
- return info["memavailable"]
- else:
- return info["memfree"] + info["cached"]
- return None
- def _no_tracing(func):
- """
- Decorator to temporarily turn off tracing for the duration of a test.
- Needed in tests that check refcounting, otherwise the tracing itself
- influences the refcounts
- """
- if not hasattr(sys, "gettrace"):
- return func
- else:
- @wraps(func)
- def wrapper(*args, **kwargs):
- original_trace = sys.gettrace()
- try:
- sys.settrace(None)
- return func(*args, **kwargs)
- finally:
- sys.settrace(original_trace)
- return wrapper
- def _get_glibc_version():
- try:
- ver = os.confstr("CS_GNU_LIBC_VERSION").rsplit(" ")[1]
- except Exception as inst:
- ver = "0.0"
- return ver
- _glibcver = _get_glibc_version()
- def _glibc_older_than(x):
- return _glibcver != "0.0" and _glibcver < x
|