| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # mypy: allow-untyped-defs
- import contextlib
- from typing import Optional
- import torch
- from torch.utils._content_store import ContentStoreReader
- LOAD_TENSOR_READER: Optional[ContentStoreReader] = None
- @contextlib.contextmanager
- def load_tensor_reader(loc):
- global LOAD_TENSOR_READER
- assert LOAD_TENSOR_READER is None
- # load_tensor is an "op", and we will play merry hell on
- # Inductor's memory planning if we return a tensor that
- # aliases another tensor that we previously returned from
- # an operator. So unlike standard ContentStoreReader use,
- # we disable the cache so that you always get fresh storages
- # (no aliasing for you!)
- LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False)
- try:
- yield
- finally:
- LOAD_TENSOR_READER = None
- def register_debug_prims():
- torch.library.define(
- "debugprims::load_tensor",
- "(str name, int[] size, int[] stride, *, ScalarType dtype, Device device) -> Tensor",
- )
- @torch.library.impl("debugprims::load_tensor", "BackendSelect")
- def load_tensor_factory(name, size, stride, dtype, device):
- if LOAD_TENSOR_READER is None:
- from torch._dynamo.testing import rand_strided
- return rand_strided(size, stride, dtype, device)
- else:
- from torch._dynamo.utils import clone_input
- # device argument here takes care of coercion
- r = LOAD_TENSOR_READER.read_tensor(name, device=device)
- assert list(r.size()) == size, f"{r.size()} != {size}"
- assert list(r.stride()) == stride, f"{r.stride()} != {stride}"
- assert r.device == device, f"{r.device} != {device}"
- # Unlike the other properties, we will do coercions for dtype
- # mismatch
- if r.dtype != dtype:
- r = clone_input(r, dtype=dtype)
- return r
|