| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # mypy: ignore-errors
- import functools
- import warnings
- from typing import Callable, Union
- import torch
- import torch.utils._pytree as pytree
- from torch._ops import OpOverload
- from torch._subclasses.fake_tensor import (
- FakeTensorMode,
- tree_flatten_only,
- UnsupportedFakeTensorException,
- )
- from torch.utils._python_dispatch import TorchDispatchMode
- aten = torch._ops.ops.aten
- def outputs_alias_inputs(outputs, inputs):
- input_storages = {
- inp._typed_storage()._cdata
- for inp in tree_flatten_only(torch.Tensor, inputs)
- if torch._C._has_storage(inp)
- }
- return any(
- torch._C._has_storage(out) and out._typed_storage()._cdata in input_storages
- for out in tree_flatten_only(torch.Tensor, outputs)
- )
- def outputs_are_inputs(outputs, inputs):
- input_ids = {id(inp) for inp in tree_flatten_only(torch.Tensor, inputs)}
- return any(id(out) in input_ids for out in tree_flatten_only(torch.Tensor, outputs))
- def output_alias_each_other(outputs):
- storages = set()
- for out in tree_flatten_only(torch.Tensor, outputs):
- if not torch._C._has_storage(out):
- continue
- stor = out._typed_storage()._cdata
- if stor in storages:
- return True
- storages.add(stor)
- return False
- def is_sdpa_error(func, idx, e):
- if (
- (
- func is aten._scaled_dot_product_flash_attention.default
- or func is aten._flash_attention_forward.default
- )
- and idx in (6, 7)
- and "Devices" in repr(e)
- ):
- return True
- if (
- (
- func is aten._scaled_dot_product_efficient_attention.default
- or func is aten._efficient_attention_forward.default
- )
- and idx in (2, 3)
- and "Devices" in repr(e)
- ):
- return True
- return False
- class CrossRefFakeMode(TorchDispatchMode):
- def __init__(
- self,
- ignore_op_fn: Union[Callable[[OpOverload], bool], None] = None,
- *,
- check_strides=True,
- check_aliasing=True,
- ):
- self.ignore_op_fn = (
- ignore_op_fn if ignore_op_fn is not None else lambda fn: False
- )
- self.check_strides = check_strides
- self.check_aliasing = check_aliasing
- def __torch_dispatch__(self, func, types, args=(), kwargs=None):
- kwargs = kwargs or {}
- fake_r = None
- # empty_like excluded for now due to sparse complex
- # aten._to_dense.default this one is getting called with csc
- if (
- func
- not in (
- aten.lift_fresh.default,
- aten.lift_fresh_copy.default,
- aten.set_.source_Storage_storage_offset,
- )
- and not self.ignore_op_fn(func)
- and torch.Tag.dynamic_output_shape not in func.tags
- and torch.Tag.inplace_view not in func.tags
- and torch.Tag.data_dependent_output not in func.tags
- ):
- # Do not import symbolic_shapes at the top of the module as it imports sympy and that's slow
- from torch.fx.experimental.symbolic_shapes import ShapeEnv
- try:
- # TODO: enable_python_dispatcher() here
- with FakeTensorMode(shape_env=ShapeEnv()) as fake_mode:
- fake_args, fake_kwargs = pytree.tree_map_only(
- torch.Tensor,
- functools.partial(fake_mode.from_tensor, static_shapes=True),
- (args, kwargs),
- )
- with warnings.catch_warnings():
- fake_r = func(*fake_args, **fake_kwargs)
- except UnsupportedFakeTensorException:
- pass
- context = (
- f"When comparing the output of {func} on FakeTensor and concrete Tensors, "
- f"found"
- )
- r = func(*args, **kwargs)
- if fake_r is not None:
- r_flat = pytree.tree_leaves(r)
- f_flat = pytree.tree_leaves(fake_r)
- assert len(f_flat) == len(
- r_flat
- ), f"{context} mismatch in number of returns {len(f_flat)} != {len(r_flat)}"
- if self.check_aliasing:
- r_aliasing = outputs_alias_inputs(r, (args, kwargs))
- f_aliasing = outputs_alias_inputs(fake_r, (fake_args, fake_kwargs))
- assert (
- r_aliasing == f_aliasing
- ), f"{context} mismatch in outputs_alias_inputs check {f_aliasing} != {r_aliasing}"
- r_identity_eq = outputs_are_inputs(r, (args, kwargs))
- f_identity_eq = outputs_are_inputs(fake_r, (fake_args, fake_kwargs))
- assert (
- r_identity_eq == f_identity_eq
- ), f"{context} mismatch in outputs_are_inputs check {f_identity_eq} != {r_identity_eq}"
- r_output_alias_each_other = output_alias_each_other(r)
- f_output_alias_each_other = output_alias_each_other(fake_r)
- assert r_output_alias_each_other == f_output_alias_each_other, (
- f"{context} mismatch in outputs_alias_each_other check "
- f"{f_output_alias_each_other} != {r_output_alias_each_other}"
- )
- for idx, (r_out, fake_out) in enumerate(
- zip(pytree.tree_leaves(r), pytree.tree_leaves(fake_r))
- ):
- r_is_ten = isinstance(r_out, torch.Tensor)
- assert r_is_ten == isinstance(
- fake_out, torch.Tensor
- ), f"{context} mismatched number of tensor outputs"
- if r_is_ten:
- assert r_out.requires_grad == fake_out.requires_grad, (
- f"{context} mismatched requires_grad-ness of outputs. "
- f"This usually means that you have added autograd support "
- f"for your operator at a dispatch key other than Autograd, "
- f"which will lead to problems"
- )
- if torch._C._has_storage(r_out):
- r_offset = r_out.storage_offset()
- f_offset = fake_out.storage_offset()
- assert (
- r_offset == f_offset
- ), f"{context} mismatched storage offset"
- try:
- torch._prims.utils.compare_tensor_meta(
- r_out,
- fake_out,
- check_strides=self.check_strides,
- allow_rhs_unbacked=True,
- )
- except Exception as e:
- if is_sdpa_error(func, idx, e):
- continue
- error_message = (
- f"{context} mismatched tensor metadata: {e}"
- if len(r_flat) == 1
- else f"{context} mismatched tensor metadata for output[{idx}]: {e}"
- )
- raise RuntimeError(error_message) from e
- return r
|