| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # mypy: allow-untyped-defs
- from functools import lru_cache as _lru_cache
- from typing import Optional
- import torch
- from ...library import Library as _Library
- __all__ = ["is_built", "is_available", "is_macos13_or_newer", "is_macos_or_newer"]
- def is_built() -> bool:
- r"""Return whether PyTorch is built with MPS support.
- Note that this doesn't necessarily mean MPS is available; just that
- if this PyTorch binary were run a machine with working MPS drivers
- and devices, we would be able to use it.
- """
- return torch._C._has_mps
- @_lru_cache
- def is_available() -> bool:
- r"""Return a bool indicating if MPS is currently available."""
- return torch._C._mps_is_available()
- @_lru_cache
- def is_macos_or_newer(major: int, minor: int) -> bool:
- r"""Return a bool indicating whether MPS is running on given MacOS or newer."""
- return torch._C._mps_is_on_macos_or_newer(major, minor)
- @_lru_cache
- def is_macos13_or_newer(minor: int = 0) -> bool:
- r"""Return a bool indicating whether MPS is running on MacOS 13 or newer."""
- return torch._C._mps_is_on_macos_or_newer(13, minor)
- _lib: Optional[_Library] = None
- def _init():
- r"""Register prims as implementation of var_mean and group_norm."""
- global _lib
- if is_built() is False or _lib is not None:
- return
- from ..._decomp.decompositions import (
- native_group_norm_backward as _native_group_norm_backward,
- )
- from ..._refs import native_group_norm as _native_group_norm
- _lib = _Library("aten", "IMPL")
- _lib.impl("native_group_norm", _native_group_norm, "MPS")
- _lib.impl("native_group_norm_backward", _native_group_norm_backward, "MPS")
|