| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- # mypy: allow-untyped-defs
- import torch
- from typing import List
- __all__ = [
- "compile",
- "assume_constant_result",
- "reset",
- "allow_in_graph",
- "list_backends",
- "disable",
- "cudagraph_mark_step_begin",
- "wrap_numpy",
- "is_compiling",
- "is_dynamo_compiling",
- ]
- def compile(*args, **kwargs):
- """
- See :func:`torch.compile` for details on the arguments for this function.
- """
- return torch.compile(*args, **kwargs)
- def reset() -> None:
- """
- This function clears all compilation caches and restores the system to its initial state.
- It is recommended to call this function, especially after using operations like `torch.compile(...)`
- to ensure a clean state before another unrelated compilation
- """
- import torch._dynamo
- torch._dynamo.reset()
- def allow_in_graph(fn):
- """
- Tells the compiler frontend (Dynamo) to skip symbolic introspection of the function
- and instead directly write it to the graph when encountered.
- If you are using :func:`torch.compile` (with backend="inductor" (the default)), or
- :func:`torch.export.export`, and trying to black-box a Python function throughout
- all tracing, do not use this API.
- Instead, please create a custom operator (see :ref:`custom-ops-landing-page`)
- .. warning::
- If you're a typical torch.compile user (e.g. you're applying torch.compile to
- a model to make it run faster), you probably don't want to use this function.
- :func:`allow_in_graph` is a footgun because it skips the compiler frontend
- (Dynamo) that is responsible for doing safety checks (graph breaks, handling
- closures, etc). Incorrect usage will lead to difficult-to-debug silent
- incorrectness issues.
- Given a Python function with no allow_in_graph decorator, regular execution
- of torch.compile traces through the function. :func:`allow_in_graph` changes
- it so that the frontend does not trace inside the function, but the compiler
- backend still traces through it. Compare this to custom operators, which
- treats a function as a black box throughout the torch.compile stack. The following
- table compares these mechanisms.
- +------------------------+-----------------------+--------------------------------+
- | Mechanism | Frontend (Dynamo) | Backend (AOTAutograd+Inductor) |
- +========================+=======================+================================+
- | no decorator | trace inside | trace inside |
- +------------------------+-----------------------+--------------------------------+
- | allow_in_graph | opaque callable | trace inside |
- +------------------------+-----------------------+--------------------------------+
- | custom op | opaque callable | opaque callable |
- +------------------------+-----------------------+--------------------------------+
- One common use case for :func:`allow_in_graph()` is as an escape hatch for the compiler
- frontend: if you know the function works w.r.t. to the downstream components of the
- compilation stack (AOTAutograd and Inductor) but there is a Dynamo bug that prevents it from
- symbolically introspecting the function properly (or if your code is in C/C++ and
- therefore cannot be introspected with Dynamo), then one can decorate said function
- with :func:`allow_in_graph` to bypass Dynamo.
- We require that ``fn`` adhere to the following restrictions. Failure to adhere
- results in undefined behavior:
- - The inputs to ``fn`` must be Proxy-able types in the FX graph. Valid types include:
- Tensor/int/bool/float/None/List[Tensor?]/List[int?]/List[float?]
- Tuple[Tensor?, ...]/Tuple[int?, ...]/Tuple[float?, ...]/torch.dtype/torch.device
- - The outputs to ``fn`` must be Proxy-able types in the FX graph (see previous bullet)
- - all Tensors used inside of ``fn`` must be passed directly as inputs to ``fn``
- (as opposed to being captured variables).
- Args:
- fn: A callable representing the function to be included in the graph.
- If ``fn`` is a list or tuple of callables it recursively applies
- :func:`allow_in_graph()` to each function and returns a new list or
- tuple containing the modified functions.
- Example::
- torch.compiler.allow_in_graph(my_custom_function)
- @torch.compile(...)
- def fn(a):
- x = torch.add(x, 1)
- x = my_custom_function(x)
- x = torch.add(x, 1)
- return x
- fn(...)
- Will capture a single graph containing ``my_custom_function()``.
- """
- import torch._dynamo
- return torch._dynamo.allow_in_graph(fn)
- def list_backends(exclude_tags=("debug", "experimental")) -> List[str]:
- """
- Return valid strings that can be passed to `torch.compile(..., backend="name")`.
- Args:
- exclude_tags(optional): A tuple of strings representing tags to exclude.
- """
- import torch._dynamo
- return torch._dynamo.list_backends(exclude_tags)
- def assume_constant_result(fn):
- """
- This function is used to mark a function `fn` as having a constant result.
- This allows the compiler to optimize away your function
- Returns The same function `fn`
- Args:
- fn: The function to be marked as having a constant result.
- .. warning::
- `assume_constant_result` can if invalid cause safety and soundness issues, :func:`torch.compile`
- will not attempt to validate whether the constant assumption is true or not
- """
- import torch._dynamo
- return torch._dynamo.assume_constant_result(fn)
- def disable(fn=None, recursive=True):
- """
- This function provides both a decorator and a context manager to disable compilation on a function
- It also provides the option of recursively disabling called functions
- Args:
- fn (optional): The function to disable
- recursive (optional): A boolean value indicating whether the disabling should be recursive.
- """
- import torch._dynamo
- return torch._dynamo.disable(fn, recursive)
- def cudagraph_mark_step_begin():
- """
- Indicates that a new iteration of inference or training is about to begin.
- CUDA Graphs will free tensors of a prior iteration. A new iteration is started on each invocation of
- torch.compile, so long as there is not a pending backward that has not been called.
- If that heuristic is wrong, such as in the following example, manually mark it with this api.
- .. code-block:: python
- @torch.compile(mode="reduce-overhead")
- def rand_foo():
- return torch.rand([4], device="cuda")
- for _ in range(5):
- torch.compiler.cudagraph_mark_step_begin()
- rand_foo() + rand_foo()
- For more details, see `torch.compiler_cudagraph_trees <https://pytorch.org/docs/main/torch.compiler_cudagraph_trees.html>`__
- """
- from torch._inductor import cudagraph_trees
- cudagraph_trees.mark_step_begin()
- def wrap_numpy(fn):
- r"""Decorator that turns a function from ``np.ndarray``s to ``np.ndarray``s into a function
- from ``torch.Tensor``s to ``torch.Tensor``s.
- It is designed to be used with :func:`torch.compile` with ``fullgraph=True``. It allows to
- compile a NumPy function as if it were a PyTorch function. This allows you to run NumPy code
- on CUDA or compute its gradients.
- .. note::
- This decorator does not work without :func:`torch.compile`.
- Example::
- >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
- >>> # Compile a NumPy function as a Tensor -> Tensor function
- >>> @torch.compile(fullgraph=True)
- >>> @torch.compiler.wrap_numpy
- >>> def fn(a: np.ndarray):
- >>> return np.sum(a * a)
- >>> # Execute the NumPy function using Tensors on CUDA and compute the gradients
- >>> x = torch.arange(6, dtype=torch.float32, device="cuda", requires_grad=True)
- >>> out = fn(x)
- >>> out.backward()
- >>> print(x.grad)
- tensor([ 0., 2., 4., 6., 8., 10.], device='cuda:0')
- """
- from torch._dynamo.external_utils import wrap_numpy as wrap
- return wrap(fn)
- _is_compiling_flag: bool = False
- def is_compiling() -> bool:
- """
- Indicates whether a graph is executed/traced as part of torch.compile() or torch.export().
- Note that there are 2 other related flags that should deprecated eventually:
- * torch._dynamo.external_utils.is_compiling()
- * torch._utils.is_compiling()
- Example::
- >>> def forward(self, x):
- >>> if not torch.compiler.is_compiling():
- >>> pass # ...logic that is not needed in a compiled/traced graph...
- >>>
- >>> # ...rest of the function...
- """
- if torch.jit.is_scripting():
- return False
- else:
- return _is_compiling_flag
- def is_dynamo_compiling() -> bool:
- """
- Indicates whether a graph is traced via TorchDynamo.
- It's stricter than is_compiling() flag, as it would only be set to True when
- TorchDynamo is used.
- Example::
- >>> def forward(self, x):
- >>> if not torch.compiler.is_dynamo_compiling():
- >>> pass # ...logic that is not needed in a TorchDynamo-traced graph...
- >>>
- >>> # ...rest of the function...
- """
- return False
|