_memory_viz.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. # mypy: allow-untyped-defs
  2. import pickle
  3. import sys
  4. import os
  5. import io
  6. import subprocess
  7. import json
  8. from functools import lru_cache
  9. from typing import Any
  10. from itertools import groupby
  11. import base64
  12. import warnings
  13. import operator
  14. cache = lru_cache(None)
  15. __all__ = ["format_flamegraph", "segments", "memory", "compare"]
  16. def _frame_fmt(f, full_filename=False):
  17. i = f['line']
  18. fname = f['filename']
  19. if not full_filename:
  20. fname = fname.split('/')[-1]
  21. func = f['name']
  22. return f'{fname}:{i}:{func}'
  23. @cache
  24. def _frame_filter(name, filename):
  25. omit_functions = [
  26. "unwind::unwind",
  27. "CapturedTraceback::gather",
  28. "gather_with_cpp",
  29. "_start",
  30. "__libc_start_main",
  31. "PyEval_",
  32. "PyObject_",
  33. "PyFunction_",
  34. ]
  35. omit_filenames = [
  36. "core/boxing",
  37. "/Register",
  38. "/Redispatch",
  39. "pythonrun.c",
  40. "Modules/main.c",
  41. "Objects/call.c",
  42. "Objects/methodobject.c",
  43. "pycore_ceval.h",
  44. "ceval.c",
  45. "cpython/abstract.h",
  46. ]
  47. for of in omit_functions:
  48. if of in name:
  49. return False
  50. for of in omit_filenames:
  51. if of in filename:
  52. return False
  53. return True
  54. def _frames_fmt(frames, full_filename=False, reverse=False):
  55. if reverse:
  56. frames = reversed(frames)
  57. return [_frame_fmt(f, full_filename) for f in frames if _frame_filter(f['name'], f['filename'])]
  58. def _block_extra_legacy(b):
  59. if 'history' in b:
  60. frames = b['history'][0].get('frames', [])
  61. real_size = b['history'][0]['real_size']
  62. else:
  63. real_size = b.get('requested_size', b['size'])
  64. frames = []
  65. return frames, real_size
  66. def _block_extra(b):
  67. if 'frames' not in b:
  68. # old snapshot format made it more complicated to get frames/allocated size
  69. return _block_extra_legacy(b)
  70. return b['frames'], b['requested_size']
  71. def format_flamegraph(flamegraph_lines, flamegraph_script=None):
  72. if flamegraph_script is None:
  73. flamegraph_script = f'/tmp/{os.getuid()}_flamegraph.pl'
  74. if not os.path.exists(flamegraph_script):
  75. import urllib.request
  76. print(f"Downloading flamegraph.pl to: {flamegraph_script}")
  77. urllib.request.urlretrieve(
  78. 'https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl', flamegraph_script)
  79. subprocess.check_call(['chmod', '+x', flamegraph_script])
  80. args = [flamegraph_script, '--countname', 'bytes']
  81. p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8')
  82. assert p.stdin is not None
  83. assert p.stdout is not None
  84. p.stdin.write(flamegraph_lines)
  85. p.stdin.close()
  86. result = p.stdout.read()
  87. p.stdout.close()
  88. p.wait()
  89. assert p.wait() == 0
  90. return result
  91. def _write_blocks(f, prefix, blocks):
  92. def frames_fragment(frames):
  93. if not frames:
  94. return "<non-python>"
  95. return ';'.join(_frames_fmt(frames, reverse=True))
  96. for b in blocks:
  97. if 'history' not in b:
  98. frames, accounted_for_size = _block_extra(b)
  99. f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {accounted_for_size}\n')
  100. else:
  101. accounted_for_size = 0
  102. for h in b['history']:
  103. sz = h['real_size']
  104. accounted_for_size += sz
  105. if 'frames' in h:
  106. frames = h['frames']
  107. f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {sz}\n')
  108. else:
  109. f.write(f'{prefix};{b["state"]};<no-context> {sz}\n')
  110. gaps = b['size'] - accounted_for_size
  111. if gaps:
  112. f.write(f'{prefix};{b["state"]};<gaps> {gaps}\n')
  113. def segments(snapshot, format_flamegraph=format_flamegraph):
  114. f = io.StringIO()
  115. for seg in snapshot['segments']:
  116. prefix = f'stream_{seg["stream"]};seg_{seg["address"]}'
  117. _write_blocks(f, prefix, seg['blocks'])
  118. return format_flamegraph(f.getvalue())
  119. def memory(snapshot, format_flamegraph=format_flamegraph):
  120. f = io.StringIO()
  121. for seg in snapshot['segments']:
  122. prefix = f'stream_{seg["stream"]}'
  123. _write_blocks(f, prefix, seg['blocks'])
  124. return format_flamegraph(f.getvalue())
  125. def compare(before, after, format_flamegraph=format_flamegraph):
  126. def _seg_key(seg):
  127. return (seg['address'], seg['total_size'])
  128. def _seg_info(seg):
  129. return f'stream_{seg["stream"]};seg_{seg["address"]}'
  130. f = io.StringIO()
  131. before_segs = {_seg_key(seg) for seg in before}
  132. after_segs = {_seg_key(seg) for seg in after}
  133. print(f'only_before = {[a for a, _ in (before_segs - after_segs)]}')
  134. print(f'only_after = {[a for a, _ in (after_segs - before_segs)]}')
  135. for seg in before:
  136. if _seg_key(seg) not in after_segs:
  137. _write_blocks(f, f'only_before;{_seg_info(seg)}', seg['blocks'])
  138. for seg in after:
  139. if _seg_key(seg) not in before_segs:
  140. _write_blocks(f, f'only_after;{_seg_info(seg)}', seg['blocks'])
  141. return format_flamegraph(f.getvalue())
  142. def _format_size(num):
  143. # https://stackoverflow.com/questions/1094841/get-human-readable-version-of-file-size
  144. for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]:
  145. if abs(num) < 1024.0:
  146. return f"{num:3.1f}{unit}B"
  147. num /= 1024.0
  148. return f"{num:.1f}YiB"
  149. class Bytes:
  150. def __init__(self, value):
  151. self.value = value
  152. def __add__(self, rhs):
  153. return Bytes(self.value + rhs)
  154. def __repr__(self):
  155. return _format_size(self.value)
  156. def calc_active(seg):
  157. return sum(b['size'] for b in seg['blocks'] if b['state'] == 'active_allocated')
  158. def _report_free(free_external, free_internal):
  159. total = free_external + free_internal
  160. suffix = ''
  161. if total != 0:
  162. pct = (free_internal / total) * 100
  163. suffix = f' ({pct:.1f}% internal)'
  164. return f'{Bytes(total)}{suffix}'
  165. PAGE_SIZE = 1024 * 1024 * 20
  166. legend = f"""\
  167. Legend:
  168. [a ] - a segment in the allocator
  169. ^-- a page {Bytes(PAGE_SIZE)} of memory in the segment
  170. a-z: pages filled with a single block's content
  171. ' ': page is completely free
  172. *: page if completely full with multiple blocks
  173. 0-9: page is partially full with tensors of multiple blocks (9 == 90% full)
  174. (X% internal) - of the free memory, X% is free because we rounded the size of the allocation.
  175. """
  176. def segsum(data):
  177. r"""Visually reports how the allocator has filled its segments.
  178. This printout can help debug fragmentation issues since free fragments
  179. will appear as gaps in this printout. The amount of free space is reported
  180. for each segment.
  181. We distinguish between internal free memory which occurs because the
  182. allocator rounds the allocation size, and external free memory, which are
  183. the gaps between allocations in a segment.
  184. Args:
  185. data: snapshot dictionary created from _snapshot()
  186. """
  187. segments = []
  188. out = io.StringIO()
  189. out.write(f"Summary of segments >= {Bytes(PAGE_SIZE)} in size\n")
  190. total_reserved = 0
  191. total_allocated = 0
  192. free_external = 0
  193. free_internal = 0
  194. for seg in sorted(data['segments'], key=lambda x: (x['total_size'], calc_active(x))):
  195. total_reserved += seg['total_size']
  196. seg_free_external = 0
  197. seg_free_internal = 0
  198. seg_allocated = 0
  199. all_ranges = []
  200. boffset = 0
  201. for b in seg['blocks']:
  202. active = b['state'] == 'active_allocated'
  203. if active:
  204. _, allocated_size = _block_extra(b)
  205. all_ranges.append((boffset, allocated_size, True))
  206. seg_allocated += allocated_size
  207. seg_free_internal += b['size'] - allocated_size
  208. else:
  209. seg_free_external += b['size']
  210. boffset += b['size']
  211. total_allocated += seg_allocated
  212. free_external += seg_free_external
  213. free_internal += seg_free_internal
  214. nseg = (seg['total_size'] - 1) // PAGE_SIZE + 1
  215. occupied = [' ' for _ in range(nseg)]
  216. frac = [0.0 for _ in range(nseg)]
  217. active_size = 0
  218. for i, (start_, size, active) in enumerate(all_ranges):
  219. active_size += size
  220. finish_ = (start_ + size)
  221. start = start_ // PAGE_SIZE
  222. finish = (finish_ - 1) // PAGE_SIZE + 1
  223. m = chr(ord('a' if active else 'A') + (i % 26))
  224. for j in range(start, finish):
  225. s = max(start_, j * PAGE_SIZE)
  226. e = min(finish_, (j + 1) * PAGE_SIZE)
  227. frac[j] += (e - s) / PAGE_SIZE
  228. if occupied[j] != ' ':
  229. occupied[j] = '0123456789*'[int(frac[j] * 10)]
  230. else:
  231. occupied[j] = m
  232. stream = '' if seg['stream'] == 0 else f', stream_{seg["stream"]}'
  233. body = ''.join(occupied)
  234. assert seg_free_external + seg_free_internal + seg_allocated == seg['total_size']
  235. stream = f' stream_{seg["stream"]}' if seg['stream'] != 0 else ''
  236. if seg['total_size'] >= PAGE_SIZE:
  237. out.write(f'[{body}] {Bytes(seg["total_size"])} allocated, '
  238. f'{_report_free(seg_free_external, seg_free_internal)} free{stream}\n')
  239. out.write(f'segments: {len(data["segments"])}\n')
  240. out.write(f'total_reserved: {Bytes(total_reserved)}\n')
  241. out.write(f'total_allocated: {Bytes(total_allocated)}\n')
  242. internal_external = f' ({Bytes(free_internal)} internal + {Bytes(free_external)} external)' if free_internal else ''
  243. out.write(f'total_free: {_report_free(free_external, free_internal)}\n')
  244. out.write(legend)
  245. assert free_internal + free_external + total_allocated == total_reserved
  246. return out.getvalue()
  247. def trace(data):
  248. out = io.StringIO()
  249. def format(entries):
  250. segment_intervals : list = []
  251. segment_addr_to_name = {}
  252. allocation_addr_to_name = {}
  253. free_names : list = []
  254. next_name = 0
  255. def _name():
  256. nonlocal next_name
  257. if free_names:
  258. return free_names.pop()
  259. r, m = next_name // 26, next_name % 26
  260. next_name += 1
  261. return f'{chr(ord("a") + m)}{"" if r == 0 else r}'
  262. def find_segment(addr):
  263. for name, saddr, size in segment_intervals:
  264. if addr >= saddr and addr < saddr + size:
  265. return name, saddr
  266. for i, seg in enumerate(data['segments']):
  267. saddr = seg['address']
  268. size = seg['allocated_size']
  269. if addr >= saddr and addr < saddr + size:
  270. return f'seg_{i}', saddr
  271. return None, None
  272. count = 0
  273. out.write(f'{len(entries)} entries\n')
  274. total_reserved = 0
  275. for seg in data['segments']:
  276. total_reserved += seg['total_size']
  277. for count, e in enumerate(entries):
  278. if e['action'] == 'alloc':
  279. addr, size = e['addr'], e['size']
  280. n = _name()
  281. seg_name, seg_addr = find_segment(addr)
  282. if seg_name is None:
  283. seg_name = "MEM"
  284. offset = addr
  285. else:
  286. offset = addr - seg_addr
  287. out.write(f'{n} = {seg_name}[{offset}:{Bytes(size)}]\n')
  288. allocation_addr_to_name[addr] = (n, size, count)
  289. count += size
  290. elif e['action'] == 'free_requested':
  291. addr, size = e['addr'], e['size']
  292. name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
  293. out.write(f'del {name} # {Bytes(size)}\n')
  294. elif e['action'] == 'free_completed':
  295. addr, size = e['addr'], e['size']
  296. count -= size
  297. name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
  298. out.write(f'# free completed for {name} {Bytes(size)}\n')
  299. if name in allocation_addr_to_name:
  300. free_names.append(name)
  301. del allocation_addr_to_name[name]
  302. elif e['action'] == 'segment_alloc':
  303. addr, size = e['addr'], e['size']
  304. name = _name()
  305. out.write(f'{name} = cudaMalloc({addr}, {Bytes(size)})\n')
  306. segment_intervals.append((name, addr, size))
  307. segment_addr_to_name[addr] = name
  308. elif e['action'] == 'segment_free':
  309. addr, size = e['addr'], e['size']
  310. name = segment_addr_to_name.get(addr, addr)
  311. out.write(f'cudaFree({name}) # {Bytes(size)}\n')
  312. if name in segment_addr_to_name:
  313. free_names.append(name)
  314. del segment_addr_to_name[name]
  315. elif e['action'] == 'oom':
  316. size = e['size']
  317. free = e['device_free']
  318. out.write(f'raise OutOfMemoryError # {Bytes(size)} requested, {Bytes(free)} free in CUDA\n')
  319. else:
  320. out.write(f'{e}\n')
  321. out.write(f"TOTAL MEM: {Bytes(count)}")
  322. for i, d in enumerate(data['device_traces']):
  323. if d:
  324. out.write(f'Device {i} ----------------\n')
  325. format(d)
  326. return out.getvalue()
  327. _memory_viz_template = r"""
  328. <!DOCTYPE html>
  329. <html>
  330. <head>
  331. </head>
  332. <body>
  333. <script type="module">
  334. import {add_local_files} from "https://cdn.jsdelivr.net/gh/pytorch/pytorch@main/torch/utils/viz/MemoryViz.js"
  335. const local_files = $SNAPSHOT
  336. add_local_files(local_files, $VIZ_KIND)
  337. </script>
  338. </body>
  339. """
  340. def _format_viz(data, viz_kind, device):
  341. if device is not None:
  342. warnings.warn(
  343. 'device argument is deprecated, plots now contain all device',
  344. FutureWarning,
  345. stacklevel=3,
  346. )
  347. buffer = pickle.dumps(data)
  348. buffer += b'\x00' * (3 - len(buffer) % 3)
  349. # Encode the buffer with base64
  350. encoded_buffer = base64.b64encode(buffer).decode('utf-8')
  351. json_format = json.dumps([{"name": 'snapshot.pickle', "base64": encoded_buffer}])
  352. return _memory_viz_template.replace('$VIZ_KIND', repr(viz_kind)) \
  353. .replace('$SNAPSHOT', json_format)
  354. def trace_plot(data, device=None, plot_segments=False):
  355. """Generate a visualization over time of the memory usage recorded by the trace as an html file.
  356. Args:
  357. data: Memory snapshot as generated from torch.cuda.memory._snapshot()
  358. device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
  359. plot_segments (bool, optional): Plots memory returned from cudaMalloc, rather than individual allocations.
  360. Defaults to False.
  361. Returns:
  362. str: HTML of visualization
  363. """
  364. return _format_viz(data, 'Active Memory Timeline' if not plot_segments else 'Active Cached Memory Timeline', device)
  365. def _profile_to_snapshot(profile):
  366. import torch
  367. from torch.profiler._memory_profiler import Action, TensorKey
  368. from torch._C._profiler import _EventType
  369. memory_profile = profile._memory_profile()
  370. allocation_stacks = {}
  371. for event in memory_profile._op_tree.sorted_nodes:
  372. if event.tag == _EventType.Allocation:
  373. parent = event.parent
  374. python_parents = []
  375. while parent:
  376. if parent.tag in (_EventType.PyCall, _EventType.PyCCall):
  377. python_parents.append(parent)
  378. parent = parent.parent
  379. key = TensorKey.from_allocation(event.extra_fields)
  380. # Corner case: If allocation doesn't have an ID (can't prove it was used as a Tensor)
  381. # key will be None. I should add some way to identify these, I just haven't yet.
  382. if key and event.extra_fields.alloc_size > 0:
  383. allocation_stacks[key] = python_parents
  384. device_count = torch.cuda.device_count()
  385. snapshot = {
  386. 'device_traces': [[] for _ in range(device_count + 1)],
  387. 'segments': [{'device': device,
  388. 'address': None,
  389. 'total_size': 0,
  390. 'stream': 0,
  391. 'blocks': []} for device in range(device_count + 1)]
  392. }
  393. def to_device(device):
  394. if device.type == 'cuda':
  395. return device.index
  396. else:
  397. return device_count
  398. def allocate(size, tensor_key, version, during_trace=True):
  399. device = to_device(tensor_key.device)
  400. addr = tensor_key.storage.ptr
  401. seg = snapshot['segments'][device] # type: ignore[index]
  402. if seg['address'] is None or seg['address'] > addr:
  403. seg['address'] = addr
  404. seg['total_size'] = max(seg['total_size'], addr + size) # record max addr for now, we will make it the size later
  405. category = memory_profile._categories.get(tensor_key, version)
  406. category = category.name.lower() if category is not None else "unknown"
  407. stack = allocation_stacks.get(tensor_key, ())
  408. stack = [{'filename': 'none', 'line': 0, 'name': p.name} for p in stack]
  409. r = {'action': 'alloc', 'addr': addr, 'size': size, 'stream': 0, 'frames': stack, 'category': category}
  410. if during_trace:
  411. snapshot['device_traces'][device].append(r) # type: ignore[index]
  412. return r
  413. def free(alloc, device):
  414. for e in ('free_requested', 'free_completed'):
  415. snapshot['device_traces'][device].append({'action': e, # type: ignore[index]
  416. 'addr': alloc['addr'],
  417. 'size': alloc['size'],
  418. 'stream': 0,
  419. 'frames': alloc['frames']})
  420. kv_to_elem = {}
  421. # create the device trace
  422. for time, action, (tensor_key, version), size in memory_profile.timeline:
  423. if not isinstance(tensor_key, TensorKey):
  424. continue
  425. if action == Action.CREATE:
  426. kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version)
  427. elif action == Action.DESTROY:
  428. free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
  429. elif action == Action.INCREMENT_VERSION:
  430. free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
  431. kv_to_elem[(tensor_key, version + 1)] = allocate(size, tensor_key, version + 1)
  432. elif action == Action.PREEXISTING:
  433. kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version, during_trace=False)
  434. # create the final snapshot state
  435. blocks_at_end = [(to_device(tensor_key.device), event['addr'], event['size'], event['frames'])
  436. for (tensor_key, version), event in kv_to_elem.items()]
  437. for device, blocks in groupby(sorted(blocks_at_end), key=operator.itemgetter(0)):
  438. seg = snapshot['segments'][device] # type: ignore[index]
  439. last_addr = seg['address']
  440. for _, addr, size, frames in blocks:
  441. if last_addr < addr:
  442. seg['blocks'].append({'size': addr - last_addr, 'state': 'inactive'})
  443. seg['blocks'].append({'size': size, 'state': 'active_allocated', 'requested_size': size, 'frames': frames})
  444. last_addr = addr + size
  445. if last_addr < seg['total_size']:
  446. seg['blocks'].append({'size': seg['total_size'] - last_addr, 'state': 'inactive'})
  447. snapshot['segments'] = [seg for seg in snapshot['segments'] if seg['blocks']] # type: ignore[attr-defined]
  448. for seg in snapshot['segments']: # type: ignore[attr-defined, name-defined, no-redef]
  449. seg['total_size'] -= seg['address']
  450. if not seg['blocks']:
  451. seg['blocks'].append({'size': seg['total_size'], 'state': 'inactive'})
  452. return snapshot
  453. def profile_plot(profile, device=None):
  454. """Generate a visualization over time of the memory usage recorded by kineto memory profiling as an html file.
  455. Args:
  456. profile: profile as generated by `torch.profiler.profile(profile_memory=True)`
  457. device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
  458. Returns:
  459. str: HTML of visualization
  460. """
  461. snapshot = _profile_to_snapshot(profile)
  462. return _format_viz(snapshot, 'Active Memory Timeline', device)
  463. def segment_plot(data: Any, device=None):
  464. return _format_viz(data, 'Allocator State History', device)
  465. if __name__ == "__main__":
  466. import os.path
  467. thedir = os.path.realpath(os.path.dirname(__file__))
  468. if thedir in sys.path:
  469. # otherwise we find cuda/random.py as random...
  470. sys.path.remove(thedir)
  471. import argparse
  472. fn_name = 'torch.cuda.memory._snapshot()'
  473. pickled = f'pickled memory statistics from {fn_name}'
  474. parser = argparse.ArgumentParser(description=f'Visualize memory dumps produced by {fn_name}')
  475. subparsers = parser.add_subparsers(dest='action')
  476. def _output(p):
  477. p.add_argument('-o', '--output', default='output.svg', help='flamegraph svg (default: output.svg)')
  478. description = 'Prints overall allocation statistics and a visualization of how the allocators segments are currently filled.'
  479. stats_a = subparsers.add_parser('stats', description=description)
  480. stats_a.add_argument('input', help=pickled)
  481. description = 'Prints buffer of the most recent allocation events embedded in the snapshot in a Pythonic style.'
  482. trace_a = subparsers.add_parser('trace', description=description)
  483. trace_a.add_argument('input', help=pickled)
  484. description = 'Generate a flamegraph that visualizes what memory is stored in each allocator segment (aka block)'
  485. segments_a = subparsers.add_parser('segments', description=description)
  486. segments_a.add_argument('input', help=pickled)
  487. _output(segments_a)
  488. description = "Generate a flamegraph the program locations contributing to CUDA memory usage."
  489. memory_a = subparsers.add_parser('memory', description=description)
  490. memory_a.add_argument('input', help=pickled)
  491. _output(memory_a)
  492. description = 'Generate a flamegraph that shows segments (aka blocks) that have been added ' \
  493. 'or removed between two different memorys snapshots.'
  494. compare_a = subparsers.add_parser('compare', description=description)
  495. compare_a.add_argument('before', help=pickled)
  496. compare_a.add_argument('after', help=pickled)
  497. _output(compare_a)
  498. plots = (
  499. ("trace_plot", "Generate a visualization over time of the memory usage recorded by the trace as an html file."),
  500. ("segment_plot", "Visualize how allocations are packed into allocator segments at each point in a trace as an html file.")
  501. )
  502. for cmd, description in plots:
  503. trace_plot_a = subparsers.add_parser(cmd, description=description)
  504. trace_plot_a.add_argument('input', help=pickled)
  505. help = 'visualize trace from this device (default: chooses the only device with trace info or errors)'
  506. trace_plot_a.add_argument('-d', '--device', type=int, default=None, help=help)
  507. help = 'path to save the visualization(default: output.html)'
  508. trace_plot_a.add_argument('-o', '--output', default='output.html', help=help)
  509. if cmd == "trace_plot":
  510. help = 'visualize change to segments rather than individual allocations'
  511. trace_plot_a.add_argument('-s', '--segments', action='store_true', help=help)
  512. args = parser.parse_args()
  513. def _read(name):
  514. if name == '-':
  515. f = sys.stdin.buffer
  516. else:
  517. f = open(name, 'rb')
  518. data = pickle.load(f)
  519. if isinstance(data, list): # segments only...
  520. data = {'segments': data, 'traces': []}
  521. return data
  522. def _write(name, data):
  523. with open(name, 'w') as f:
  524. f.write(data)
  525. if args.action == 'segments':
  526. data = _read(args.input)
  527. _write(args.output, segments(data))
  528. elif args.action == 'memory':
  529. data = _read(args.input)
  530. _write(args.output, memory(data))
  531. elif args.action == 'stats':
  532. data = _read(args.input)
  533. print(segsum(data))
  534. elif args.action == 'trace':
  535. data = _read(args.input)
  536. print(trace(data))
  537. elif args.action == 'compare':
  538. before = _read(args.before)
  539. after = _read(args.after)
  540. _write(args.output, compare(before, after))
  541. elif args.action == 'trace_plot':
  542. data = _read(args.input)
  543. _write(args.output, trace_plot(data, device=args.device, plot_segments=args.segments))
  544. elif args.action == 'segment_plot':
  545. data = _read(args.input)
  546. _write(args.output, segment_plot(data, device=args.device))