| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # mypy: allow-untyped-defs
- # Copyright (c) Meta Platforms, Inc. and affiliates
- import logging
- from dataclasses import dataclass
- from typing import List, Tuple, Union
- import torch
- from torch import fx
- logger = logging.getLogger(__name__)
- def flatten_args_detach(args):
- """
- Flatten the args into a list form and detach the tensors from computational graph.
- """
- flat_detached_args = []
- def extract_tensor_args(a):
- nonlocal flat_detached_args
- if isinstance(a, torch.Tensor):
- val = a.detach().requires_grad_(a.requires_grad)
- flat_detached_args.append(val)
- return val
- else:
- flat_detached_args.append(a)
- return a
- new_args = fx.node.map_aggregate(
- args,
- extract_tensor_args,
- )
- return new_args, flat_detached_args
- def flatten_args(args):
- """
- Flatten the args into a list form.
- """
- flat_args = []
- def extract_tensor_args(a):
- nonlocal flat_args
- flat_args.append(a)
- return a
- fx.node.map_aggregate(
- args,
- extract_tensor_args,
- )
- return flat_args
- class PipeliningShapeError(RuntimeError):
- """Shape mismatch between configured and runtime values."""
- def validate_tensor_metadata(desc, expected, given):
- if not expected.shape == given.shape:
- raise PipeliningShapeError(
- f"{desc} has a shape mismatch: expected {expected.shape} actual {given.shape}"
- )
- if not expected.dtype == given.dtype:
- raise PipeliningShapeError(
- f"{desc} has a dtype mismatch: expected {expected.dtype} actual {given.dtype}"
- )
- if not expected.stride() == given.stride():
- raise PipeliningShapeError(
- f"{desc} has a stride mismatch: expected {expected.stride()} actual {given.stride()}"
- )
- def validate_tensors_metadata(
- desc,
- expected_tensors: Union[List[torch.Tensor], Tuple[torch.Tensor, ...]],
- actual_tensors: Union[List[torch.Tensor], Tuple[torch.Tensor, ...]],
- ):
- if len(expected_tensors) != len(actual_tensors):
- raise PipeliningShapeError(
- f"{desc}: Number of values ({len(actual_tensors)}) does not match expected number ({len(expected_tensors)})"
- )
- for i in range(len(expected_tensors)):
- validate_tensor_metadata(
- f"{desc}: value {i}", expected_tensors[i], actual_tensors[i]
- )
- @dataclass
- class PipeInfo:
- """
- Captures information for a pipeline (`Pipe` object).
- """
- graph: fx.Graph
- num_stages: int
- has_loss_and_backward: bool
|