| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469 |
- # mypy: allow-untyped-defs
- # Copyright (c) Meta Platforms, Inc. and affiliates
- import logging
- from typing import Any, Dict, List, Optional, Tuple
- import torch
- from torch.fx.node import map_aggregate
- from torch.utils._pytree import tree_flatten, tree_unflatten
- __all__ = [
- "TensorChunkSpec",
- "split_args_kwargs_into_chunks",
- "merge_chunks",
- ]
- logger = logging.getLogger(__name__)
- """
- _debug_mask_minibatches specifies to send masked versions of the mini-batch
- through instead of micro-batch slices--this can be used for more stable
- numerical testing (see [A Note About Correctness Testing])
- """
- _debug_mask_minibatches = False
- class _CustomReducer:
- """
- Custom reducer class that can be used to specify a custom operation that
- reduces losses of multiple microbatches into one value.
- Example:
- >>> # xdoctest: +SKIP
- >>> sum_reducer = _CustomReducer(
- >>> torch.tensor(0.0),
- >>> lambda a, b: a + b
- >>> )
- """
- def __init__(self, init_value, reduce_fn):
- self.init_value = init_value
- self.reduce_fn = reduce_fn
- class _LossReducer(_CustomReducer):
- pass
- sum_reducer = _LossReducer(torch.tensor(0.0), lambda a, b: a + b)
- # Default chunking dimension is 0. This is used for the case where the user did
- # not specify a chunking dimension.
- DEFAULT_CHUNK_DIM = 0
- class TensorChunkSpec:
- """
- Class used to specify chunking of inputs
- """
- def __init__(self, split_dim):
- self.split_dim = split_dim
- split_dim: int
- def __repr__(self):
- return (
- f"{self.__class__.__module__}.{self.__class__.__name__}({self.split_dim})"
- )
- def __str__(self):
- return f"TensorChunkSpec({self.split_dim})"
- @staticmethod
- def from_tuple(
- chunk_dims: Tuple[int, ...],
- ):
- """
- A helper for creating a tuple of `TensorChunkSpec` from a tuple of chunk
- dimensions (int's).
- Example:
- >>> # xdoctest: +SKIP
- >>> # There are three positional arguments to the model, and
- >>> # we are chunking them along dimension 0, 0 and 1, respectively
- >>> args_chunk_spec = TensorChunkSpec.from_tuple((0, 0, 1))
- """
- args_chunk_spec = map_aggregate(
- chunk_dims,
- lambda dim: TensorChunkSpec(dim),
- )
- return args_chunk_spec
- @staticmethod
- def from_dict(
- chunk_dims: Dict[str, int],
- ):
- """
- A helper for creating a dictionary of `TensorChunkSpec` from a
- dictionary of chunk dimensions (int's).
- Example:
- >>> # xdoctest: +SKIP
- >>> # Chunk dimension 0 for the "id" argument, 1 for the "mask" argument
- >>> kwargs_chunk_spec = TensorChunkSpec.from_dict({"id": 0, "mask": 1})
- """
- kwargs_chunk_spec = map_aggregate(
- chunk_dims,
- lambda dim: TensorChunkSpec(dim),
- )
- return kwargs_chunk_spec
- # Class used to specify replication of inputs
- class _Replicate:
- pass
- def _shard_dict_of_args(
- args_dict,
- args_chunk_spec,
- num_chunks,
- ):
- """
- Given a dictionary of args, and a dictionary of chunking specs, shard the
- args according to the chunking specs.
- Args:
- args_dict: Dictionary of args
- args_chunk_spec: Dictionary of chunking specs
- num_chunks: Number of chunks to shard the args into
- Returns:
- args_split: List of sharded args
- """
- # Stage 1+2: flatten and shard/replicate
- # args_sharded_replicated : [num args, num flat values, num chunks]
- args_sharded_replicated = {}
- arg_specs = []
- real_num_chunks = num_chunks
- first_tensor = True
- assert len(args_dict) == len(
- args_chunk_spec
- ), f"args_dict.keys() = {list(args_dict.keys())} args_chunk_spec.keys() = {list(args_chunk_spec.keys())}"
- for arg_key, arg in args_dict.items():
- flat, spec = tree_flatten(arg)
- arg_specs.append(spec)
- chunk_spec = args_chunk_spec[arg_key]
- assert chunk_spec is not None # Should have been set by caller
- chunk_spec_flat, _ = tree_flatten(chunk_spec)
- if len(flat) != len(chunk_spec_flat):
- raise ValueError(
- f"Argument value {arg} did not have the same number of "
- f"values as as chunk spec {chunk_spec}"
- )
- sharded_arg_flat = []
- for v, chunk_v in zip(flat, chunk_spec_flat):
- if chunk_v is _Replicate or not isinstance(v, torch.Tensor):
- sharded_arg_flat.append([v] * real_num_chunks)
- elif isinstance(chunk_v, TensorChunkSpec):
- # TODO: check type of v. If it's a tensor, use chunk (or debug mask).
- # If it's a collection type, split it as you would expect. Otherwise,
- # Throw an error
- assert isinstance(v, torch.Tensor), f"{v} is not a tensor"
- v_split_dim_size = v.size(chunk_v.split_dim)
- if v_split_dim_size < real_num_chunks:
- if first_tensor:
- # We can only adjust number of chunks when we hit this
- # issue at the first tensor encountered
- logger.warning(
- f"Tensor size on chunking dimension is {v_split_dim_size}, " # noqa: G004
- f"downsizing the number of chunks from {num_chunks} to {v_split_dim_size}."
- )
- real_num_chunks = v_split_dim_size
- else:
- raise RuntimeError(
- f"Arg {arg_key} on chunking dimension has a size of {v_split_dim_size}, "
- f"smaller than the number of chunks {num_chunks}. "
- "PiPPy cannot reduce the number of chunks because "
- "other arguments have bigger chunk-dimension sizes. "
- "Please adjust your num_chunks setting."
- )
- chunk_tensors = torch.tensor_split(
- v, real_num_chunks, chunk_v.split_dim
- )
- if _debug_mask_minibatches:
- expanded_chunks = []
- split_dim_idx = 0
- for chunk_tensor in chunk_tensors:
- new_val = torch.zeros_like(v)
- upper_idx = split_dim_idx + chunk_tensor.size(chunk_v.split_dim)
- slice_indices = [slice(None, None, None)] * new_val.ndim
- slice_indices[chunk_v.split_dim] = slice(
- split_dim_idx, upper_idx
- )
- new_val[slice_indices] = chunk_tensor
- expanded_chunks.append(new_val)
- split_dim_idx += chunk_tensor.size(chunk_v.split_dim)
- sharded_arg_flat.append(expanded_chunks)
- else:
- sharded_arg_flat.append(chunk_tensors) # type: ignore[arg-type]
- first_tensor = False
- else:
- raise TypeError(f"Unrecognized chunk spec: {chunk_v}")
- args_sharded_replicated[arg_key] = sharded_arg_flat
- # chunks_flat : [num chunks, num args, num flat values]
- chunks_flat = []
- for chunk_idx in range(real_num_chunks):
- chunk_args = {}
- for key, arg in args_sharded_replicated.items():
- arg_single_chunk = []
- for v_flat in arg:
- arg_single_chunk.append(v_flat[chunk_idx])
- chunk_args[key] = arg_single_chunk
- chunks_flat.append(chunk_args)
- # args_split : [num chunks, num args]
- args_split = []
- for chunk in chunks_flat:
- per_chunk_args = {}
- assert len(arg_specs) == len(chunk)
- for (key, arg), arg_spec in zip(chunk.items(), arg_specs):
- per_chunk_args[key] = tree_unflatten(arg, arg_spec)
- args_split.append(per_chunk_args)
- return args_split
- def split_args_kwargs_into_chunks(
- args: Tuple[Any, ...],
- kwargs: Optional[Dict[str, Any]],
- chunks: int,
- args_chunk_spec: Optional[Tuple[TensorChunkSpec, ...]] = None,
- kwargs_chunk_spec: Optional[Dict[str, TensorChunkSpec]] = None,
- ) -> Tuple[List[Tuple], List[Dict]]:
- """
- Given a sequence of args and kwargs, split them into a number of chunks
- according to their respective chunking specs.
- Args:
- args: Tuple of args
- kwargs: Dict of kwargs
- chunks: Number of chunks to split the args and kwargs into
- args_chunk_spec: chunking specs for args, in same shape as args
- kwargs_chunk_spec: chunking specs for kwargs, in same shape as kwargs
- Returns:
- args_split: List of sharded args
- kwargs_split: List of sharded kwargs
- """
- # Given `args` and `kwargs`, we want to yield a set of `chunks` args and kwargs such that
- # the constituent Tensor values have been sharded/replicated according to the `args_chunk_spec`
- # and `kwargs_chunk_spec` specifications. The steps are as follows:
- #
- # 1. Use pytree.tree_flatten to flatten each arg and its spec into nto a 1d array of values.
- # To use a running example: suppose our inputs look like
- #
- # args = ([A, [B, C]], D) args_spec = ([None, [None, TensorChunkSpec]], None)
- # (kwargs not shown but it's a similar process)
- #
- # Then for this step we would end up with
- #
- # args = ([A, B, C], D) args_spec = ([None, None, TensorChunkSpec], None)
- #
- # 2. Shard or replicate the arguments subject to the policy in the spec. Suppose chunks = 2
- #
- # args = ([[A, A], [B, B], [C_1, C_2]], [D, D])
- #
- # 3. Rotate the nesting order such that chunks are the outer dimension
- #
- # args_chunks = [
- # ([A, B, C_1], D),
- # ([A, B, C_2], D),
- # ]
- #
- # 4. Unflatten each chunk according to the spec
- #
- # args_chunks = [
- # ([A, [B, C_1]], D),
- # ([A, [B, C_2]], D),
- # ]
- # TODO: _debug_mask_minibatches
- # Handle the case where kwargs is None
- if kwargs is None:
- kwargs = {}
- # If user did not provide args_chunk_spec or kwargs_chunk_spec, we extend
- # their format and use default chunking along dim 0
- if args_chunk_spec is None:
- args_chunk_spec = (TensorChunkSpec(DEFAULT_CHUNK_DIM),) * len(args)
- if kwargs_chunk_spec is None:
- kwargs_chunk_spec = dict.fromkeys(kwargs, TensorChunkSpec(DEFAULT_CHUNK_DIM))
- args_split_dict = _shard_dict_of_args(
- dict(enumerate(args)),
- dict(enumerate(args_chunk_spec)),
- chunks,
- )
- real_num_chunks = len(args_split_dict)
- kwargs_split = _shard_dict_of_args(
- kwargs,
- kwargs_chunk_spec,
- real_num_chunks,
- )
- if len(kwargs_split) < real_num_chunks:
- # In case kwargs are sharded into less chunks
- # e.g. when `args` has no tensor, just values
- real_num_chunks = len(kwargs_split)
- # Re-shard args
- args_split_dict = _shard_dict_of_args(
- dict(enumerate(args)),
- dict(enumerate(args_chunk_spec)),
- real_num_chunks,
- )
- if len(args_split_dict) != len(kwargs_split):
- raise RuntimeError(
- "args and kwargs are split into different number of chunks: "
- f"{len(args_split_dict)}, {len(kwargs_split)}"
- )
- args_split = []
- for chunk_args in args_split_dict:
- args_split.append(tuple(chunk_args[i] for i in range(len(chunk_args))))
- return args_split, kwargs_split
- def merge_chunks(
- chunks: List[Any],
- chunk_spec,
- ):
- """
- Given a list of chunks, merge them into a single value according to
- the chunk spec.
- Args:
- chunks: list of chunks
- chunk_spec: Chunking spec for the chunks
- Returns:
- value: Merged value
- """
- # This is essentially the inverse of `split_args_kwargs_into_chunks`, so the
- # steps are similar to the steps in that function but in reverse. Given the
- # input values:
- #
- # chunks = [
- # ([A, [B, C_1]], D),
- # ([A, [B, C_2]], D),
- # ]
- # args_spec = ([None, [None, TensorChunkSpec]], None)
- #
- # 1. Flatten the chunks according to the chunk_spec
- #
- # chunks_flat = [
- # ([A, B, C_1], D),
- # ([A, B, C_2], D),
- # ]
- #
- # 2. Rotate the nesting order such that chunks are the inner dimension
- #
- # value_inner = ([A, B, [C_1, C_2]], D)
- #
- # 3. Concatenate sharded arguments
- #
- # value_combined = ([A, B, C], D)
- #
- # 4. Unflatten the combined args given the spec
- #
- # value = ([A, [B, C]], D)
- # Preliminary: flatten the chunk spec
- if chunk_spec is not None:
- spec_flattened, flatten_spec = tree_flatten(chunk_spec)
- else:
- # If chunk_spec is not provided, we will merge chunks along the default dimension (0), for all output fields
- # We obtain the output structure by flattening chunk 0 and generate the chunk_spec
- chunk0_flat, flatten_spec = tree_flatten(chunks[0])
- spec_flattened = [TensorChunkSpec(DEFAULT_CHUNK_DIM)] * len(chunk0_flat)
- # Stage 1: flatten chunks
- # chunks_flattened : [num chunks, num args]
- chunks_flattened = []
- for chunk in chunks:
- chunk_flattened, _ = tree_flatten(chunk)
- if len(chunk_flattened) != len(spec_flattened):
- raise ValueError(f"Chunk {chunk} did not match chunk spec {chunk_spec}")
- chunks_flattened.append(chunk_flattened)
- # Stage 2 and 3: Rotate nesting order s.t. chunks are inner dimension and
- # concatenate sharded operands
- # args_flattened : [num args]
- args_flattened = []
- for arg_idx, arg in enumerate(spec_flattened):
- if isinstance(arg, TensorChunkSpec):
- partial_values = [
- chunks_flattened[chunk_idx][arg_idx]
- for chunk_idx in range(len(chunks_flattened))
- ]
- if _debug_mask_minibatches:
- # Infer size of individual chunks by running `tensor_split` again
- overall_shape = partial_values[0].shape
- for val in partial_values[1:]:
- assert val.shape == overall_shape
- meta_chunks = torch.tensor_split(
- torch.empty(*overall_shape, device="meta"),
- sections=len(partial_values),
- dim=arg.split_dim,
- )
- values_to_cat = []
- chunk_start_idx = 0
- assert len(partial_values) == len(meta_chunks)
- for partial_value, meta_chunk in zip(partial_values, meta_chunks):
- chunk_end_idx = chunk_start_idx + meta_chunk.size(arg.split_dim)
- slice_indices = [slice(None, None, None)] * partial_value.ndim
- slice_indices[arg.split_dim] = slice(chunk_start_idx, chunk_end_idx)
- sliced = partial_value[slice_indices]
- values_to_cat.append(sliced)
- chunk_start_idx = chunk_end_idx
- else:
- values_to_cat = partial_values
- args_flattened.append(torch.cat(values_to_cat, dim=arg.split_dim))
- elif isinstance(arg, _CustomReducer):
- reduced_val = arg.init_value
- for chunk_idx in range(len(chunks_flattened)):
- reduced_val = arg.reduce_fn(
- reduced_val, chunks_flattened[chunk_idx][arg_idx]
- )
- args_flattened.append(reduced_val)
- else:
- value = chunks_flattened[0][arg_idx]
- for chunk_idx in range(1, len(chunks_flattened)):
- assert chunks_flattened[chunk_idx][arg_idx] == value
- args_flattened.append(value)
- # Stage 4: Unflatten combined args
- return tree_unflatten(args_flattened, flatten_spec)
|