| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- # mypy: allow-untyped-defs
- # Copyright (c) Meta Platforms, Inc. and affiliates
- import contextlib
- from typing import cast, Dict, Optional, Tuple
- import torch
- import torch._prims_common as utils
- import torch.distributed._functional_collectives as funcol
- import torch.distributed.distributed_c10d as c10d
- from torch import Tensor
- from torch.distributed._tensor import DTensor, Replicate, Shard
- from torch.distributed._tensor.ops.embedding_ops import _MaskPartial
- from torch.distributed._tensor.ops.math_ops import (
- _skip_dim,
- Reduction,
- replicate_reduction_dims,
- )
- from torch.distributed._tensor.placement_types import DTensorSpec, Placement, TensorMeta
- from torch.distributed.device_mesh import DeviceMesh
- aten = torch.ops.aten
- __all__ = ["loss_parallel"]
- @contextlib.contextmanager
- def loss_parallel():
- """
- A context manager that enables loss parallelism, where efficient parallelized loss computation
- can be performed when the input is sharded on the class dimension. Currently only the cross-entropy
- loss is supported.
- Within this context manager, one can use :func:`~torch.nn.functional.cross_entropy` or
- :class:`~torch.nn.CrossEntropyLoss` as usual, with the following assumptions on the input parameters.
- The corresponding ``backward()`` call, if any, also needs to happen under this context manager.
- Args:
- input (:class:`DTensor`):
- Input logits. Assumed to be sharded on the class dimension.
- target (Union[:class:`torch.Tensor`, :class:`DTensor`]):
- Must be ground truth class indices (class probabilities currently not supported).
- Assumed to be replicated across the ``DeviceMesh``.
- weight (Union[:class:`torch.Tensor`, :class:`DTensor`], optional):
- If given, assumed to be replicated across the ``DeviceMesh``.
- label_smoothing:
- Currently not supported.
- Returns:
- A replicated :class:`DTensor`.
- Example:
- A sharded DTensor is manually created here to showcase the usage.
- In practice, it is usually the output of a TP module.
- >>> # xdoctest: +SKIP("distributed")
- >>> from torch.distributed.tensor.parallel import loss_parallel
- >>> from torch.distributed.device_mesh import init_device_mesh
- >>> ...
- >>> device_mesh = init_device_mesh("cuda", (8,))
- >>> input = torch.randn(4, 16, device="cuda", requires_grad=True)
- >>> dist_input = distribute_tensor(input, device_mesh, placements=[Shard(1)])
- >>> target = torch.randint(16, (4,), device="cuda")
- >>> with loss_parallel():
- >>> loss = F.cross_entropy(dist_input, target, reduction="mean")
- >>> loss.backward()
- >>> ...
- """
- _enable_custom_loss_ops()
- yield
- _disable_custom_loss_ops()
- # Currently only needs to support one dimensional DeviceMesh; in general return
- # the mesh_dim with placements[mesh_dim].is_shard(dim)
- def _find_all_reduce_mesh_dim(placements: Tuple[Placement, ...], dim: int) -> int:
- if not len(placements) == 1:
- raise ValueError(
- "Currently loss_parallel() only supports input on one-dimensional DeviceMesh."
- )
- if not placements[0].is_shard(dim):
- raise ValueError(
- f"loss_parallel() should be enabled only when the input tensor is sharded on dimension {dim}."
- )
- return 0
- def _cast_to_dtensor(
- tensor, placements: Tuple[Placement, ...], mesh: DeviceMesh
- ) -> DTensor:
- if isinstance(tensor, DTensor):
- if tensor.placements == placements:
- return tensor
- else:
- raise RuntimeError(f"Expected {placements} but got {tensor.placements}.")
- elif isinstance(tensor, torch.Tensor):
- return DTensor.from_local(
- tensor, device_mesh=mesh, placements=placements, run_check=False
- )
- else:
- raise TypeError(f"Unsupported type {type(tensor)}")
- def _propagate_tensor_meta(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- ) -> TensorMeta:
- op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
- tensor_meta = DTensor._op_dispatcher.sharding_propagator._propagate_tensor_meta(
- op_info.schema
- )
- if isinstance(tensor_meta, TensorMeta):
- return tensor_meta
- elif isinstance(tensor_meta, tuple):
- return tensor_meta[0]
- else:
- raise RuntimeError(f"Unexpected tensor meta type: {type(tensor_meta)}.")
- # NOTE: The implementation follows torch._decomp.decomposition._log_softmax,
- # with all_reduce manually inserted to perform distributed computation.
- def _log_softmax(x, dim, half_to_float, mesh, mesh_dim):
- x = x.contiguous()
- if half_to_float:
- assert x.dtype == torch.half
- computation_dtype, result_dtype = utils.elementwise_dtypes(
- x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
- )
- x = x.to(computation_dtype)
- if x.numel() == 0:
- shifted = x
- else:
- x_max = torch.amax(x, dim, keepdim=True)
- x_max = funcol.all_reduce(
- x_max, reduceOp=c10d.ReduceOp.MAX.name, group=(mesh, mesh_dim)
- )
- shifted = x - x_max
- shifted_sumexp = torch.sum(torch.exp(shifted), dim, keepdim=True)
- shifted_sumexp = funcol.all_reduce(
- shifted_sumexp, reduceOp=c10d.ReduceOp.SUM.name, group=(mesh, mesh_dim)
- )
- shifted_logsumexp = torch.log(shifted_sumexp)
- result = shifted - shifted_logsumexp
- if not half_to_float:
- result = result.to(result_dtype)
- return result
- def _log_softmax_handler(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- ) -> object:
- x = cast(DTensor, args[0])
- dim = cast(int, args[1])
- half_to_float = cast(bool, args[2])
- spec = x._spec
- mesh_dim = _find_all_reduce_mesh_dim(spec.placements, dim)
- output_tensor_meta = _propagate_tensor_meta(op_call, args, kwargs)
- res = _log_softmax(x._local_tensor, dim, half_to_float, spec.mesh, mesh_dim)
- res_spec = DTensorSpec(
- spec.mesh,
- spec.placements,
- tensor_meta=output_tensor_meta,
- )
- return DTensor(
- res,
- res_spec,
- requires_grad=res.requires_grad,
- )
- # NOTE: As explained below at _nll_loss_and_log_softmax_backward, the
- # _log_softmax_backward_handler does not actually do any computation.
- def _log_softmax_backward_handler(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- ) -> object:
- grad_output = cast(DTensor, args[0])
- input_dtype = cast(torch.dtype, args[3])
- return grad_output.to(input_dtype)
- # NOTE: The implementation follows torch._decomp.decomposition._nll_loss_forward,
- # with customized communication inserted to perform distributed computation.
- def _nll_loss_forward(
- x: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- local_weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- channel_dim_size: int,
- mesh: DeviceMesh,
- mesh_dim: int,
- ) -> Tuple[Tensor, Tensor]:
- n_dims = x.dim()
- channel_dim = 1
- if n_dims < 2:
- channel_dim = 0
- def _weight_view(weight: Tensor) -> Tensor:
- if n_dims > 1:
- shape = [
- 1,
- ] * n_dims
- shape[channel_dim] = weight.shape[0]
- w = weight.view(shape)
- else:
- w = weight
- return w
- if weight is not None:
- w = _weight_view(weight)
- assert local_weight is not None
- local_w = _weight_view(local_weight)
- x = x * local_w
- safe_target = torch.where(target != ignore_index, target, 0)
- safe_target_ = safe_target.unsqueeze(channel_dim)
- # The following code block is a distributed version of
- # result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim)
- partial_placement = _MaskPartial(logical_dim_size=channel_dim_size)
- safe_target_partial_ = partial_placement._partition_value(
- safe_target_, mesh, mesh_dim
- )
- result_partial = torch.gather(x, channel_dim, safe_target_partial_)
- # an all_reduce happens here
- result_reduced = partial_placement._reduce_value(result_partial, mesh, mesh_dim)
- result = -result_reduced.squeeze(channel_dim)
- result = torch.where(target != ignore_index, result, 0)
- if reduction == Reduction.NONE.value and n_dims > 1:
- total_weight = x.new_full((), 0.0)
- return result, total_weight
- if weight is not None:
- new_shape = list(x.shape)
- new_shape[channel_dim] = -1
- w = w.expand(new_shape)
- wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim)
- wsum = torch.where(target != ignore_index, wsum, 0)
- total_weight = wsum.sum()
- else:
- total_weight = (target != ignore_index).sum().to(x)
- # NOTE: this is correct only on 1D DeviceMesh; o/w additional
- # all-reduce on result and total_weight is needed
- if reduction == Reduction.SUM.value:
- result = result.sum()
- elif reduction == Reduction.MEAN.value:
- result = result.sum() / total_weight
- return result, total_weight
- def _nll_loss_forward_handler(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- ) -> object:
- x = cast(DTensor, args[0])
- target = args[1]
- weight = args[2]
- reduction = cast(int, args[3])
- ignore_index = cast(int, args[4])
- channel_dim = 1 if x.dim() >= 2 else 0
- channel_dim_size = x.shape[channel_dim]
- spec = x._spec
- mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
- # Check user input: if target and weight are not DTensors, convert them to DTensors;
- # if they are DTensors, check that they have the desired placements.
- target_placements = _skip_dim(
- replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
- )
- all_replicate_placements = (Replicate(),) * spec.mesh.ndim
- target = _cast_to_dtensor(target, target_placements, spec.mesh)
- local_weight = None
- if weight is not None:
- weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
- # For local computation, both (replicated) weight and (sharded) local_weight
- # are needed in _nll_loss_forward(). local_weight is generated here using
- # DTensor API, without incurring any communication.
- sharded_placements = [
- Shard(0) if i == mesh_dim else Replicate() for i in range(spec.mesh.ndim)
- ]
- local_weight = weight.redistribute(spec.mesh, sharded_placements)._local_tensor
- assert local_weight.shape[0] == x._local_tensor.shape[channel_dim]
- if reduction == Reduction.NONE.value:
- output_placements = target_placements
- else:
- output_placements = all_replicate_placements
- # tensor inputs to _propagate_tensor_meta need to be DTensors
- args = list(args)
- args[1], args[2] = target, weight
- output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
- result, total_weight = _nll_loss_forward(
- x._local_tensor,
- target._local_tensor,
- weight._local_tensor if weight is not None else None,
- local_weight,
- reduction,
- ignore_index,
- channel_dim_size,
- spec.mesh,
- mesh_dim,
- )
- out_spec = DTensorSpec(spec.mesh, output_placements, tensor_meta=output_tensor_meta)
- return (
- DTensor(
- result,
- out_spec,
- requires_grad=result.requires_grad,
- ),
- total_weight,
- )
- # NOTE: The backward computation of cross_entropy goes through two steps:
- # backward for nll_loss and then backward for log_softmax. In loss parallel,
- # the two steps are fused into the following function (called by _nll_loss_backward_handler)
- # to avoid communication when target contains class indices not class probabilities.
- # Also note that the _log_softmax_backward_handler does not perform computation.
- # The implementation resembles _nll_loss_backward and _log_softmax_backward_data
- # from torch._decomp.decomposition.
- def _nll_loss_and_log_softmax_backward(
- grad_output: Tensor,
- x: Tensor,
- target: Tensor,
- weight: Optional[Tensor],
- reduction: int,
- ignore_index: int,
- total_weight: Tensor,
- channel_dim_size: int,
- mesh: DeviceMesh,
- mesh_dim: int,
- ) -> Tensor:
- channel_dim = 0 if x.dim() < 2 else 1
- if reduction == Reduction.MEAN.value:
- grad_output = grad_output / total_weight
- target = target.unsqueeze(channel_dim)
- safe_target = torch.where(target != ignore_index, target, 0)
- grad_input = torch.zeros_like(x)
- # The following code block is a distributed version of
- # grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0)
- partial_placement = _MaskPartial(logical_dim_size=channel_dim_size)
- safe_target = safe_target.squeeze(channel_dim).flatten()
- masked_safe_target = partial_placement._partition_value(safe_target, mesh, mesh_dim)
- # only update grad_input to -1 if not masked
- assert partial_placement.mask_buffer.data is not None
- grad_update = partial_placement.mask_buffer.data.float() - 1.0
- arange_1d = torch.arange(
- masked_safe_target.shape[0], device=masked_safe_target.device
- )
- # The first two cases with x.dim() <= 2 are for aten.nll_loss_backward.default;
- # the last case is for aten.nll_loss2d_backward.default.
- if x.dim() == 1:
- grad_input[masked_safe_target] = grad_update
- elif x.dim() == 2:
- grad_input[arange_1d, masked_safe_target] = grad_update
- else:
- grad_input_t = grad_input.transpose(channel_dim, -1)
- intermidate_shape = grad_input_t.shape
- grad_input_2d = grad_input_t.reshape(-1, x.shape[channel_dim])
- grad_input_2d[arange_1d, masked_safe_target] = grad_update
- grad_input = grad_input_2d.view(intermidate_shape).transpose(channel_dim, -1)
- if grad_input.dim() > grad_output.dim() > 0:
- grad_output = grad_output.unsqueeze(channel_dim)
- if weight is not None:
- new_shape = [1 for _ in range(x.dim())]
- new_shape[channel_dim] = weight.shape[0]
- weight = weight.reshape(new_shape)
- # In order for fused computation to work, the following line is rewritten.
- # grad_output = grad_output * weight
- new_shape = list(x.shape)
- new_shape[channel_dim] = -1
- w = weight.expand(new_shape)
- w_target = torch.gather(w, channel_dim, target)
- grad_output = grad_output * w_target
- grad_output = torch.where(target != ignore_index, grad_output, 0)
- # NOTE: Instead of directly returning the grad_input as grad_output for log_softmax,
- # here we perform backward computation for log_softmax altogether to avoid the
- # otherwise extra all_gather communication.
- # return grad_input * grad_output
- return (grad_input + torch.exp(x)) * grad_output
- def _nll_loss_backward_handler(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- ) -> object:
- grad_output = cast(DTensor, args[0])
- x = cast(DTensor, args[1])
- target = args[2]
- weight = args[3]
- reduction = cast(int, args[4])
- ignore_index = cast(int, args[5])
- total_weight = cast(Tensor, args[6])
- channel_dim = 1 if x.dim() >= 2 else 0
- channel_dim_size = x.shape[channel_dim]
- spec = x._spec
- mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
- # if target and weight are not DTensors, convert them to DTensors
- target_placements = _skip_dim(
- replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
- )
- all_replicate_placements = (Replicate(),) * spec.mesh.ndim
- target = _cast_to_dtensor(target, target_placements, spec.mesh)
- if weight is not None:
- weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
- # tensor inputs to _propagate_tensor_meta need to be DTensors
- args = list(args)
- args[2], args[3] = target, weight
- args[6] = _cast_to_dtensor(total_weight, all_replicate_placements, spec.mesh)
- output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
- result = _nll_loss_and_log_softmax_backward(
- grad_output._local_tensor,
- x._local_tensor,
- target._local_tensor,
- weight._local_tensor if weight is not None else None,
- reduction,
- ignore_index,
- total_weight,
- channel_dim_size,
- spec.mesh,
- mesh_dim,
- )
- # the output sharding is the same as input sharding: Shard(channel_dim) on mesh_dim
- out_spec = DTensorSpec(
- spec.mesh,
- spec.placements,
- tensor_meta=output_tensor_meta,
- )
- return DTensor(
- result,
- out_spec,
- requires_grad=result.requires_grad,
- )
- customized_loss_ops = {
- aten._log_softmax.default: _log_softmax_handler,
- aten._log_softmax_backward_data.default: _log_softmax_backward_handler,
- aten.nll_loss_forward.default: _nll_loss_forward_handler,
- aten.nll_loss2d_forward.default: _nll_loss_forward_handler,
- aten.nll_loss_backward.default: _nll_loss_backward_handler,
- aten.nll_loss2d_backward.default: _nll_loss_backward_handler,
- }
- def _enable_custom_loss_ops():
- DTensor._op_dispatcher._custom_op_handlers.update(customized_loss_ops)
- def _disable_custom_loss_ops():
- for custom_op in customized_loss_ops:
- DTensor._op_dispatcher._custom_op_handlers.pop(custom_op)
|