| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- #pragma once
- #include <ATen/Parallel.h>
- #include <ATen/SparseTensorImpl.h>
- #include <ATen/core/Tensor.h>
- #ifndef AT_PER_OPERATOR_HEADERS
- #include <ATen/Functions.h>
- #else
- #include <ATen/ops/empty.h>
- #include <ATen/ops/tensor.h>
- #endif
- namespace at::sparse {
- // Just for documentary purposes
- using SparseTensor = Tensor;
- using SparseType = Type;
- // This is an internal utility function for getting at the SparseTensorImpl,
- // so that we can write sparse tensor specific accessors for special fields
- // in SparseTensor. You should only use this for writing low level
- // setters/getters for SparseTensorImpl fields; otherwise, you should use
- // the low level setters/getters that were implemented using this.
- //
- // This may be called repeatedly, so make sure it's pretty cheap.
- inline SparseTensorImpl* get_sparse_impl(const SparseTensor& self) {
- TORCH_INTERNAL_ASSERT(
- self.is_sparse(), "_internal_get_SparseTensorImpl: not a sparse tensor");
- return static_cast<SparseTensorImpl*>(self.unsafeGetTensorImpl());
- }
- // Takes indices and values and directly puts them into the sparse tensor, no
- // copy. This used to be called THSTensor_(_move)
- inline void alias_into_sparse(
- const SparseTensor& self,
- const Tensor& indices,
- const Tensor& values) {
- get_sparse_impl(self)->set_indices_and_values_unsafe(indices, values);
- }
- // Take indices and values and makes a (data) copy of them to put into the
- // sparse indices/values. This used to be called THSTensor_(_set)
- inline void copy_into_sparse(
- const SparseTensor& self,
- const Tensor& indices,
- const Tensor& values,
- bool non_blocking) {
- alias_into_sparse(
- self,
- indices.to(self._indices().options(), non_blocking, /*copy=*/true),
- values.to(self._values().options(), non_blocking, /*copy=*/true));
- }
- // TODO: put this into the public API
- inline bool is_same_tensor(const Tensor& lhs, const Tensor& rhs) {
- return lhs.unsafeGetTensorImpl() == rhs.unsafeGetTensorImpl();
- }
- inline bool is_same_density(const SparseTensor& self, const SparseTensor& src) {
- return self.sparse_dim() == src.sparse_dim() &&
- self.dense_dim() == src.dense_dim();
- }
- // Give us a new values tensor, with the same dimensionality
- // as 'values' but with a new number of non-zero elements.
- // TODO: Expose this for real in ATen, some day?
- // NB: Doesn't preserve data.
- inline Tensor new_values_with_size_of(const Tensor& values, int64_t nnz) {
- std::vector<int64_t> size = values.sizes().vec();
- size[0] = nnz;
- return at::empty(size, values.options());
- }
- // NOTE [ Flatten Sparse Indices ]
- // This helper function flattens a sparse indices tensor (a Tensor) into a 1D
- // indices tensor. E.g.,
- // input = [[2, 4, 0],
- // [3, 1, 10]]
- // full_size = [2, 12]
- // output = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 10 ] = [27, 49, 10]
- //
- // In other words, assuming that each `indices[i, :]` is a valid index to a
- // tensor `t` of shape `full_size`. This returns the corresponding indices to
- // the flattened tensor `t.reshape( prod(full_size[:indices.size(0)]), -1 )`.
- // if forceClone is true, the result will forced to be a clone of self.
- // if force_clone is true, the result will forced to be a clone of self.
- TORCH_API Tensor flatten_indices(
- const Tensor& indices,
- IntArrayRef full_size,
- bool force_clone = false);
- // Flatten sparse tensor's indices from nD to 1D, similar to NOTE [ Flatten
- // Sparse Indices ], except this one allows partial flatten: only flatten on
- // specified dims. Note that the flatten indices might be uncoalesced if
- // dims_to_flatten.size() < sparse_dim. Also if input indices is already
- // coalesced, the flattened indices will also be sorted.
- //
- // args:
- // indices: sparse tensor indices
- // sizes: sparse tensor sizes
- // dims_to_flatten: a list of dim index to flatten
- //
- // Ex1:
- // indices = [[2, 4, 0],
- // [3, 1, 3]]
- // sizes = [2, 12]
- // dims_to_flatten = [0, 1]
- // new_indices = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 3 ] = [27, 49, 3]
- //
- // Ex2:
- // dims_to_flatten = [1]
- // new_indices = [ 3, 1, 3 ] # uncoalesced
- TORCH_API Tensor flatten_indices_by_dims(
- const Tensor& indices,
- const IntArrayRef& sizes,
- const IntArrayRef& dims_to_flatten);
- // Find the CSR representation for a row `indices` from the COO format
- TORCH_API Tensor coo_to_csr(const int64_t* indices, int64_t dim, int64_t nnz);
- TORCH_API Tensor zeros_like_with_indices(const Tensor& t);
- template <size_t static_shape_max_len>
- class TensorGeometryHolder {
- using geometry_holder_t = std::array<int64_t, static_shape_max_len>;
- public:
- explicit TensorGeometryHolder(
- IntArrayRef sizes,
- IntArrayRef strides,
- TensorOptions options = {}) {
- std::copy(sizes.begin(), sizes.end(), t_sizes.begin());
- std::copy(strides.begin(), strides.end(), t_strides.begin());
- }
- explicit TensorGeometryHolder(const Tensor& t)
- : TensorGeometryHolder(t.sizes(), t.strides()) {}
- auto operator*() const {
- return std::make_tuple(t_sizes, t_strides);
- }
- private:
- geometry_holder_t t_sizes;
- geometry_holder_t t_strides;
- };
- template <>
- class TensorGeometryHolder<0> {
- using geometry_holder_t = Tensor;
- public:
- explicit TensorGeometryHolder(
- IntArrayRef sizes,
- IntArrayRef strides,
- TensorOptions options) {
- const int64_t t_ndims = sizes.size();
- const auto cpu_options = TensorOptions(options).dtype(kLong).device(kCPU);
- Tensor t_sizes_and_strides_cpu = at::empty({2, t_ndims}, cpu_options);
- t_sizes_and_strides_cpu.select(0, 0).copy_(at::tensor(sizes, cpu_options));
- t_sizes_and_strides_cpu.select(0, 1).copy_(
- at::tensor(strides, cpu_options));
- const Tensor t_sizes_and_strides =
- t_sizes_and_strides_cpu.to(options.device());
- t_sizes = t_sizes_and_strides.select(0, 0);
- t_strides = t_sizes_and_strides.select(0, 1);
- }
- explicit TensorGeometryHolder(const Tensor& t)
- : TensorGeometryHolder(t.sizes(), t.strides(), t.options()) {}
- auto operator*() const {
- return std::make_tuple(
- t_sizes.template data_ptr<int64_t>(),
- t_strides.template data_ptr<int64_t>());
- }
- private:
- geometry_holder_t t_sizes;
- geometry_holder_t t_strides;
- };
- // Return all indices of a tensor with the given shape.
- //
- // full_coo_indices(shape) is equivalent to
- // torch.ones(shape).nonzero().transpose(-2, -1) but much faster.
- TORCH_API Tensor full_coo_indices(IntArrayRef sizes, TensorOptions options);
- } // namespace at::sparse
|