| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #pragma once
- #include <ATen/core/Tensor.h>
- #include <c10/util/irange.h>
- #include <ATen/core/IListRef.h>
- namespace at::native {
- TORCH_API at::Tensor clone_preserve_strides(const at::Tensor& self);
- inline bool cat_should_skip_tensor(const Tensor& t) {
- return t.sym_numel() == 0 && t.dim() == 1;
- }
- // Check to see if the shape of tensors is compatible
- // for being concatenated along a given dimension.
- inline void check_cat_shape_except_dim(const Tensor & first, const Tensor & second, int64_t dimension, int64_t index) {
- int64_t first_dims = first.dim();
- int64_t second_dims = second.dim();
- TORCH_CHECK(first_dims == second_dims, "Tensors must have same number of dimensions: got ",
- first_dims, " and ", second_dims);
- for (const auto dim : c10::irange(first_dims)) {
- if (dim == dimension) {
- continue;
- }
- int64_t first_dim_size = first.sizes()[dim];
- int64_t second_dim_size = second.sizes()[dim];
- TORCH_CHECK(first_dim_size == second_dim_size, "Sizes of tensors must match except in dimension ",
- dimension, ". Expected size ", static_cast<long long>(first_dim_size), " but got size ", static_cast<long long>(second_dim_size), " for tensor number ", index, " in the list.");
- }
- }
- inline void check_cat_no_zero_dim(const MaterializedITensorListRef& tensors) {
- int64_t i = 0;
- for(const Tensor& t : tensors) {
- TORCH_CHECK(t.dim() > 0,
- "zero-dimensional tensor (at position ", i, ") cannot be concatenated");
- i++;
- }
- }
- inline int64_t get_num_splits(const Tensor& self, int64_t split_size, int64_t dim) {
- TORCH_CHECK(self.dim() != 0, "split expects at least a 1-dimensional tensor");
- TORCH_CHECK(split_size >= 0, "split expects split_size be non-negative, but got split_size=", split_size);
- int64_t dim_size = self.size(dim);
- TORCH_CHECK(split_size > 0 || dim_size == 0,
- "split_size can only be 0 if dimension size is 0, "
- "but got dimension size of ", dim_size);
- // if split_size is 0 and dimension size is 0, there is 1 split.
- int64_t num_splits = 1;
- if (split_size != 0) {
- // ensuring num_splits is at least 1 makes consistent the case where split_size > dim_size
- // (returns a single split). We might want to error here, but keep it for BC.
- num_splits = std::max<int64_t>((dim_size + split_size - 1) / split_size, 1);
- }
- return num_splits;
- }
- inline bool have_same_ndims(TensorList tensors) {
- auto ndim = tensors[0].dim();
- for (const auto tensor_idx : c10::irange(tensors.size())) {
- if(tensors[tensor_idx].dim() != ndim) {
- return false;
- }
- }
- return true;
- }
- inline void leading_dimension_matches(TensorList tensors, int64_t dim) {
- auto tensor_zero_size = tensors[0].sizes();
- std::vector<c10::SymInt> leading_dim_sizes(tensor_zero_size.begin(), tensor_zero_size.begin() + dim);
- for (const auto i : c10::irange(tensors.size())) {
- at::Tensor tensor = tensors[i];
- for(const auto j : c10::irange(dim)) {
- TORCH_CHECK(
- tensor.size(j) == leading_dim_sizes[j],
- "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors"
- );
- }
- }
- }
- inline int64_t preprocess_chunk_cat_inputs(TensorList tensors, int64_t dim, int64_t num_chunks) {
- TORCH_CHECK(num_chunks >= 1, "_chunk_cat expects positive num_chunks");
- TORCH_CHECK(!tensors.empty(),
- "_chunk_cat expects a non-empty input tensor list");
- auto expected_dtype = tensors[0].dtype();
- auto expected_device = tensors[0].device();
- for(const auto i : c10::irange(tensors.size())) {
- TORCH_CHECK(tensors[i].numel() > 0, "_chunk_cat expects non-empty tensor");
- TORCH_CHECK(tensors[i].dtype() == expected_dtype, "_chunk_cat expects all input tensors with the same dtype");
- TORCH_CHECK(tensors[i].device() == expected_device, "_chunk_cat expects all inputs tensors on the same device");
- }
- if (have_same_ndims(tensors)) {
- dim = maybe_wrap_dim(dim, tensors[0].dim());
- } else {
- TORCH_CHECK(dim >= 0, "_chunk_cat expects non-negative dim when input tensors have different ndims")
- for(const auto i : c10::irange(tensors.size())) {
- TORCH_CHECK(dim < tensors[i].ndimension(), "_chunk_cat expects dim < ndim for all input tensors");
- }
- }
- leading_dimension_matches(tensors, dim);
- return dim;
- }
- } // namespace at::native
|