| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- #pragma once
- #include <c10/util/complex.h>
- #include <ATen/NumericUtils.h>
- namespace at { namespace native {
- inline namespace CPU_CAPABILITY {
- // custom min and max to be used in logcumsumexp for complex arguments
- template <typename scalar_t>
- std::pair<c10::complex<scalar_t>, c10::complex<scalar_t>> _logcumsumexp_minmax(c10::complex<scalar_t> x, c10::complex<scalar_t> y) {
- if (at::_isnan(y)) { // either real is nan or imag is nan
- return std::make_pair(y, y);
- } else if (at::_isnan(x)) { // either real is nan or imag is nan
- return std::make_pair(x, x);
- } else {
- return (x.real() < y.real()) ? std::make_pair(x, y) : std::make_pair(y, x);
- }
- }
- template <typename scalar_t>
- scalar_t _log_add_exp_helper(scalar_t x, scalar_t y) {
- // Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
- scalar_t min = at::_isnan(y) ? y : std::min(x, y); // std::min returns first arg if one of the args is nan
- scalar_t max = at::_isnan(y) ? y : std::max(x, y); // std::max returns first arg if one of the args is nan
- if (min != max || std::isfinite(min)) {
- // nan will be propagated here
- return std::log1p(std::exp(min - max)) + max;
- } else {
- // special case to correctly handle infinite cases
- return x;
- }
- }
- template <typename scalar_t>
- c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
- auto [min, max] = _logcumsumexp_minmax<scalar_t>(x, y);
- auto min_real = std::real(min);
- auto max_real = std::real(max);
- if (at::_isnan(min)) { // either real is nan or imag is nan
- // handling the "infectious" NaNs
- return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
- } else if (!std::isfinite(min_real) && (min_real == max_real)) {
- if (min_real < 0) {
- // handle the -inf case, the imaginary part here does not really matter as the exp(value)
- // will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
- // It does not matter if we're taking the exp of this value
- return min;
- } else {
- // handle the +inf case, we don't need the special precision for log1p for small values
- // and to avoid producing nan in case of real(max) == real(min) == +inf
- return std::log(std::exp(min) + std::exp(max));
- }
- } else {
- return std::log1p(std::exp(min - max)) + max;
- }
- }
- } // end namespace
- }} //end at::native
|