| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172 |
- // Copyright (c) Facebook, Inc. and its affiliates.
- // All rights reserved.
- //
- // Copyright 2019 Google LLC
- //
- // This source code is licensed under the BSD-style license found in the
- // LICENSE file in the root directory of this source tree.
- #pragma once
- #include <stdbool.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <pthreadpool.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- /// The number of bytes XNNPACK may read beyond array bounds.
- /// The caller must allocate at least this many extra bytes after the tensor data passed to XNNPACK.
- ///
- /// Note: XNNPACK reads, but never writes beyond array bounds.
- #define XNN_EXTRA_BYTES 16
- /// Maximum number of dimensions in tensor shape.
- #define XNN_MAX_TENSOR_DIMS 6
- /// Allow sparse inference in a Runtime.
- ///
- /// Note: this flag hints XNNPACK to consider sparse inference, but does not guarantee it.
- #define XNN_FLAG_HINT_SPARSE_INFERENCE 0x00000001
- /// Allow IEEE FP16 inference in a Runtime.
- ///
- /// Note: this flag hints XNNPACK to consider IEEE FP16 inference, but does not guarantee it.
- #define XNN_FLAG_HINT_FP16_INFERENCE 0x00000002
- /// Force IEEE FP16 inference in a Runtime, and fail if FP16 inference is not possible.
- ///
- /// Note: this flag guarantees that XNNPACK will use IEEE FP16 inference, or fail to create the Runtime object.
- /// Warning: on x86 systems FP16 computations will be emulated at a substantial performance cost.
- #define XNN_FLAG_FORCE_FP16_INFERENCE 0x00000004
- /// Enable timing of each operator's runtime.
- #define XNN_FLAG_BASIC_PROFILING 0x00000008
- /// Enable the just-in-time compiler.
- #define XNN_FLAG_JIT 0x00000010
- /// The convolution operator represents a depthwise convolution, and use HWGo layout for filters.
- #define XNN_FLAG_DEPTHWISE_CONVOLUTION 0x00000001
- /// Assume transposed weights in a fully connected operator.
- #define XNN_FLAG_TRANSPOSE_WEIGHTS 0x00000001
- /// The operator assumes NHWC layout for the input, regardless of the output layout.
- #define XNN_FLAG_INPUT_NHWC 0x00000002
- /// Match "SAME" padding in TensorFlow. Exact padding values are computed dynamically depending on input size.
- #define XNN_FLAG_TENSORFLOW_SAME_PADDING 0x00000004
- /// Assume transposed weights in a batch matrix multiply operator.
- #define XNN_FLAG_TRANSPOSE_B XNN_FLAG_TRANSPOSE_WEIGHTS
- /// Assume transposed input in a batch matrix multiply operator.
- #define XNN_FLAG_TRANSPOSE_A 0x00000002
- /// Implicitly flatten and reshape input of a Fully Connected operator into a 2D tensor.
- #define XNN_FLAG_TENSORFLOW_RESHAPE_2D 0x00000004
- /// Match behaviour of TensorFlow 1.x.
- #define XNN_FLAG_TENSORFLOW_LEGACY_MODE 0x00000004
- /// Static weights of the FP16 operator are in FP32 format.
- #define XNN_FLAG_FP32_STATIC_WEIGHTS 0x00000008
- /// Align corners of input and output images in resize operations.
- #define XNN_FLAG_ALIGN_CORNERS 0x00000008
- /// Yield worker threads of the thread pool to the system scheduler after the inference.
- #define XNN_FLAG_YIELD_WORKERS 0x00000010
- /// Use transient indirection buffer to reduce memory footprint
- #define XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER 0x00000020
- /// Reduce the dimensions.
- #define XNN_FLAG_REDUCE_DIMS 0x00000040
- /// The number of entries in an array of xnn_dynamic_quantization_params that XNNPACK may read beyond array bounds.
- /// The caller must allocate at least this many extra xnn_dynamic_quantization_params before passing the array to XNNPACK.
- ///
- /// Note: XNNPACK reads, but never writes beyond array bounds.
- #define XNN_EXTRA_QUANTIZATION_PARAMS 8
- struct xnn_dynamic_quantization_params {
- int32_t zero_point;
- float scale;
- };
- /// Status code for any XNNPACK function call.
- enum xnn_status {
- /// The call succeeded, and all output arguments now contain valid data.
- xnn_status_success = 0,
- xnn_status_uninitialized = 1,
- xnn_status_invalid_parameter = 2,
- xnn_status_invalid_state = 3,
- xnn_status_unsupported_parameter = 4,
- xnn_status_unsupported_hardware = 5,
- xnn_status_out_of_memory = 6,
- xnn_status_reallocation_required = 7,
- };
- struct xnn_allocator {
- /// User-specified pointer that will be passed as-is to all functions in this structure.
- void* context;
- /// Pointer to a function to be called for general memory allocation.
- ///
- /// @param context - The user-specified pointer from xnn_allocator structure.
- /// @param size - The size of the memory block to allocate, in bytes.
- ///
- /// @returns Pointer to the allocated memory block of at least @ref size bytes.
- /// If allocation fails, the function must return NULL.
- void* (*allocate)(void* context, size_t size);
- /// Pointer to a function to be called for general memory re-allocation, i.e. to increase or shrink a previously
- /// allocated memory block. The content of the old memory block is copied to the new memory block.
- ///
- /// @param context - The user-specified pointer from xnn_allocator structure.
- /// @param pointer - Pointer to a memory block allocated by @ref allocate or @ref reallocate functions. Can be NULL.
- /// If the pointer is NULL, the @ref reallocate call is equivalent to an @ref allocate call.
- /// @param size - The new size of the memory block to allocate, in bytes.
- ///
- /// @returns Pointer to the newly allocated memory block of at least @ref size bytes with the content of the previous
- /// memory block.
- /// If allocation fails, the function must return NULL, but must not release the previous memory block.
- void* (*reallocate)(void* context, void* pointer, size_t size);
- /// Pointer to a function to be called for general memory de-allocation.
- ///
- /// @param context - The user-specified pointer from xnn_allocator structure.
- /// @param pointer - Pointer to a memory block allocated by @ref allocate or @ref reallocate functions. Can be NULL.
- /// If the pointer is NULL, the @ref deallocate call is a no-op.
- void (*deallocate)(void* context, void* pointer);
- /// Pointer to a function to be called for aligned memory allocation.
- ///
- /// @param context - The user-specified pointer from xnn_allocator structure.
- /// @param alignment - The alignment of the memory block to allocate, in bytes. Alignment is always a power-of-2.
- /// @param size - The size of the memory block to allocate, in bytes.
- ///
- /// @returns Pointer to the allocated memory block of at least @ref size bytes.
- /// If allocation fails, the function must return NULL.
- void* (*aligned_allocate)(void* context, size_t alignment, size_t size);
- /// Pointer to a function to be called for aligned memory de-allocation.
- ///
- /// @param context - The user-specified pointer from xnn_allocator structure.
- /// @param pointer - Pointer to a memory block allocated by @ref aligned_allocate function. Can be NULL.
- /// If the pointer is NULL, the @ref aligned_deallocate call is a no-op.
- void (*aligned_deallocate)(void* context, void* pointer);
- };
- /// Initialize XNNPACK library.
- ///
- /// XNNPACK must be successfully initialized before use. During initialization, XNNPACK populates internal structures
- /// depending on the host processor. Initialization can be time-consuming.
- ///
- /// @param[in] allocator - structure with function pointers to be use for memory allocation and de-allocation.
- /// If this argument is NULL, system-provided memory management functions (e.g. malloc/free)
- /// will be used.
- ///
- /// @retval xnn_status_success - XNNPACK is successfully initialized and ready to use.
- /// @retval xnn_status_out_of_memory - initialization failed due to out-of-memory condition.
- /// @retval xnn_status_unsupported_hardware - initialization failed because the host processor does not satisfy the
- /// minimum hardware requirements for XNNPACK. E.g. this may happen on x86
- /// processors without SSE2 extension, or on 32-bit ARM processors without
- /// the NEON SIMD extension.
- enum xnn_status xnn_initialize(const struct xnn_allocator* allocator);
- /// Deinitialize XNNPACK library.
- ///
- /// To avoid memory and resource leaks, users must call xnn_deinitialize once for each successful xnn_initialize call.
- ///
- /// @retval xnn_status_success - deinitialization call succeeded.
- enum xnn_status xnn_deinitialize(void);
- /// Subgraph is an abstract representation of a neural network model.
- /// Subgraph objects are used to define Values (tensors) and Nodes (operators) comprising the model.
- typedef struct xnn_subgraph* xnn_subgraph_t;
- /// Create a empty Subgraph object.
- ///
- /// @param external_value_ids - number of Value IDs to reserve for communication with external graph representation.
- /// The Subgraph object would avoid creating internal Value IDs in the
- /// [0, reserved_value_ids-1] range.
- /// @param flags - binary features of the subgraph. No supported flags are currently defined.
- /// @param subgraph_out - pointer to the variable that will be initialized with a handle to the Subgraph object upon
- /// successful return.
- enum xnn_status xnn_create_subgraph(
- uint32_t external_value_ids,
- uint32_t flags,
- xnn_subgraph_t* subgraph_out);
- /// Destroy a Subgraph object, as well as Values, and Nodes associated with the subgraph.
- ///
- /// @param subgraph - the Subgraph object to destroy.
- enum xnn_status xnn_delete_subgraph(
- xnn_subgraph_t subgraph);
- #define XNN_VALUE_FLAG_EXTERNAL_INPUT 0x00000001
- #define XNN_VALUE_FLAG_EXTERNAL_OUTPUT 0x00000002
- #define XNN_VALUE_FLAG_PERSISTENT 0x00000004
- #define XNN_INVALID_VALUE_ID UINT32_MAX
- /// Type of elements in a Value object.
- enum xnn_datatype {
- /// Invalid data type. Valid Values never have this datatype.
- xnn_datatype_invalid = 0,
- /// IEEE754 single-precision floating-point.
- xnn_datatype_fp32 = 1,
- /// IEEE754 half-precision floating-point.
- xnn_datatype_fp16 = 2,
- /// Quantized 8-bit signed integer with shared per-Value quantization parameters.
- xnn_datatype_qint8 = 3,
- /// Quantized 8-bit unsigned integer with shared per-Value quantization parameters.
- xnn_datatype_quint8 = 4,
- /// Quantized 32-bit signed integer with shared per-Value quantization parameters.
- xnn_datatype_qint32 = 5,
- /// Quantized 8-bit signed integer with shared per-channel quantization parameters.
- xnn_datatype_qcint8 = 6,
- /// Quantized 32-bit signed integer with shared per-channel quantization parameters.
- xnn_datatype_qcint32 = 7,
- /// Quantized 4-bit signed integer with shared per-channel quantization parameters.
- xnn_datatype_qcint4 = 8,
- /// Dynamically quantized 8-bit signed integer with per-batch quantization parameters.
- xnn_datatype_qdint8 = 9,
- };
- /// Define a tensor-type Value and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Value.
- /// @param datatype - type of the tensor elements.
- /// @param num_dims - number of dimensions in the shape.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- /// @param data - pointer to static data used for tensor initialization. If the tensor is not statically initialized,
- /// this pointer must be is NULL. If non-NULL, the life-time of the static data must exceed the life-time
- /// of the Subgraph object, and of any Runtime objects created from the Subgraph.
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be
- /// created for the Value.
- /// @param flags - binary features of the Value. Supported values are any combination of XNN_VALUE_FLAG_EXTERNAL_INPUT
- /// and XNN_VALUE_FLAG_EXTERNAL_OUTPUT.
- /// @param id_out - pointer to the variable that will be initialized with the Value ID upon successful return. If a
- /// valid @a external_id was provided, the variable will be initialized with the @a external_id value.
- enum xnn_status xnn_define_tensor_value(
- xnn_subgraph_t subgraph,
- enum xnn_datatype datatype,
- size_t num_dims,
- const size_t* dims,
- const void* data,
- uint32_t external_id,
- uint32_t flags,
- uint32_t* id_out);
- /// Define a quantized tensor-type Value and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Value.
- /// @param datatype - type of the tensor elements.
- /// @param zero_point - offset from zero to subtract from the quantized elements in the Value.
- /// @param scale - multiplication factor to convert quantized elements to real representation.
- /// @param num_dims - number of dimensions in the shape.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- /// @param data - pointer to static data used for tensor initialization. If the tensor is not statically initialized,
- /// this pointer must be is NULL. If non-NULL, the life-time of the static data must exceed the life-time
- /// of the Subgraph object, and of any Runtime objects created from the Subgraph.
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be
- /// created for the Value.
- /// @param flags - binary features of the Value. Supported values are any combination of XNN_VALUE_FLAG_EXTERNAL_INPUT
- /// and XNN_VALUE_FLAG_EXTERNAL_OUTPUT.
- /// @param id_out - pointer to the variable that will be initialized with the Value ID upon successful return. If a
- /// valid @a external_id was provided, the variable will be initialized with the @a external_id value.
- enum xnn_status xnn_define_quantized_tensor_value(
- xnn_subgraph_t subgraph,
- enum xnn_datatype datatype,
- int32_t zero_point,
- float scale,
- size_t num_dims,
- const size_t* dims,
- const void* data,
- uint32_t external_id,
- uint32_t flags,
- uint32_t* id_out);
- enum xnn_status xnn_define_channelwise_quantized_tensor_value(
- xnn_subgraph_t subgraph,
- enum xnn_datatype datatype,
- const float* scale,
- size_t num_dims,
- size_t channel_dim,
- const size_t* dims,
- const void* data,
- uint32_t external_id,
- uint32_t flags,
- uint32_t* id_out);
- /// Validate the dimensions, channel_dim, zero point, datatype, and scale of a quantized tensor-type.
- ///
- /// @param datatype - type of the tensor elements.
- /// @param zero_point - offset from zero to subtract from the quantized elements in the Value.
- /// @param scale - multiplication factor to convert quantized elements to real representation.
- /// @param num_dims - number of dimensions in the shape.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- enum xnn_status xnn_validate_quantized_tensor(
- enum xnn_datatype datatype,
- int32_t zero_point,
- float scale,
- size_t num_dims,
- const size_t* dims);
- /// Validate the dimensions, channel_dim, zero point, datatype, and scales of a channelwise quantized tensor-type.
- ///
- /// @param datatype - type of the tensor elements.
- /// @param zero_point - offset from zero to subtract from the quantized elements in the Value.
- /// @param scale - per-channel multiplication factors to convert quantized elements to real representation.
- /// @param num_dims - number of dimensions in the shape.
- /// @param channel_dim - index of the channel dimension in the tensor with per-channel quantization parameters.
- /// Typically this is the first dimension (dimension #0) of the filter tensors in the Convolution,
- /// Deconvolution, and Fully Connected operators and the last dimension of the filter tensors in
- /// the Depthwise Convolution operators.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- enum xnn_status xnn_validate_channelwise_quantized_tensor(
- enum xnn_datatype datatype,
- int32_t zero_point,
- const float* scale,
- size_t num_dims,
- size_t channel_dim,
- const size_t* dims);
- /// Define a channelwise quantized tensor-type Value and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Value.
- /// @param datatype - type of the tensor elements.
- /// @param zero_point - offset from zero to subtract from the quantized elements in the Value.
- /// @param scale - per-channel multiplication factors to convert quantized elements to real representation.
- /// @param num_dims - number of dimensions in the shape.
- /// @param channel_dim - index of the channel dimension in the tensor with per-channel quantization parameters.
- /// Typically this is the first dimension (dimension #0) of the filter tensors in the Convolution,
- /// Deconvolution, and Fully Connected operators and the last dimension of the filter tensors in
- /// the Depthwise Convolution operators.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- /// @param data - pointer to static data used for tensor initialization. If the tensor is not statically initialized,
- /// this pointer must be is NULL. If non-NULL, the life-time of the static data must exceed the life-time
- /// of the Subgraph object, and of any Runtime objects created from the Subgraph.
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be
- /// created for the Value.
- /// @param flags - binary features of the Value. Supported values are any combination of XNN_VALUE_FLAG_EXTERNAL_INPUT
- /// and XNN_VALUE_FLAG_EXTERNAL_OUTPUT.
- /// @param id_out - pointer to the variable that will be initialized with the Value ID upon successful return. If a
- /// valid @a external_id was provided, the variable will be initialized with the @a external_id value.
- enum xnn_status xnn_define_channelwise_quantized_tensor_value_v2(
- xnn_subgraph_t subgraph,
- enum xnn_datatype datatype,
- int32_t zero_point,
- const float* scale,
- size_t num_dims,
- size_t channel_dim,
- const size_t* dims,
- const void* data,
- uint32_t external_id,
- uint32_t flags,
- uint32_t* id_out);
- /// Define a dynamically quantized tensor-type Value and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Value.
- /// @param datatype - type of the tensor elements.
- /// @param num_dims - number of dimensions in the shape.
- /// @param num_non_batch_dims - number of non-batch dimensions in the shape. The leading (num_dims - num_non_batch_dims)
- /// dimensions will be flattened and treated as batch size. A set of quantization parameters
- /// will be calculated for each batch element.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be
- /// created for the Value.
- /// @param flags - binary features of the Value. No supported flags are currently defined.
- /// @param id_out - pointer to the variable that will be initialized with the Value ID upon successful return. If a
- /// valid @a external_id was provided, the variable will be initialized with the @a external_id value.
- enum xnn_status xnn_define_dynamically_quantized_tensor_value(
- xnn_subgraph_t subgraph,
- enum xnn_datatype datatype,
- size_t num_dims,
- size_t num_nonbatch_dims,
- const size_t* dims,
- uint32_t external_id,
- uint32_t flags,
- uint32_t* id_out);
- /// Define a Convert Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Convert Node. No supported flags are currently defined.
- enum xnn_status xnn_define_convert(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Convolution Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING
- /// flag is specified.
- /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param kernel_height - kernel (filter) height.
- /// @param kernel_width - kernel (filter) width.
- /// @param subsampling_height - height of subsampling region for convolution output (convolution height stride).
- /// @param subsampling_width - width of subsampling region for convolution output (convolution width stride).
- /// @param dilation_height - dilation of kernel elements along the height dimension.
- /// @param dilation_width - dilation of kernel elements along the width dimension.
- /// @param groups - number of convolution groups.
- /// @param group_input_channels - number of input channels per group.
- /// @param group_output_channels - number of output channels per group.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, groups * group_input_channels] dimensions
- /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph
- /// with [groups * group_output_channels, kernel_height, kernel_width, group_input_channels]
- /// dimensions.
- /// @param bias_id - Value ID for the bias tensor, or XNN_INVALID_VALUE_ID for a 2D Convolution Node without a bias. If
- /// present, the bias tensor must be a 1D tensor defined in the @a subgraph with [groups *
- /// group_output_channels] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, groups * group_output_channels] dimensions.
- /// @param flags - binary features of the 2D Convolution Node. The only currently supported values is
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING.
- enum xnn_status xnn_define_convolution_2d(
- xnn_subgraph_t subgraph,
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t filter_id,
- uint32_t bias_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Deconvolution (Transposed Convolution) Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param padding_top - implicit padding above 2D output data.
- /// @param padding_right - implicit padding to the right of 2D output data.
- /// @param padding_bottom - implicit padding below 2D output data.
- /// @param padding_left - implicit padding to the left of 2D output data.
- /// @param adjustment_height - additional elements in the bottom of the 2D output data.
- /// @param adjustment_width - additional elements to the right of the 2D output data.
- /// @param kernel_height - kernel (filter) height.
- /// @param kernel_width - kernel (filter) width.
- /// @param upsampling_height - height of upsampling region for deconvolution input (deconvolution height stride).
- /// @param upsampling_width - width of upsampling region for deconvolution input (deconvolution width stride).
- /// @param dilation_height - dilation of kernel elements along the height dimension.
- /// @param dilation_width - dilation of kernel elements along the width dimension.
- /// @param groups - number of convolution groups.
- /// @param group_input_channels - number of input channels per group.
- /// @param group_output_channels - number of output channels per group.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, groups * group_input_channels] dimensions
- /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph
- /// with [groups * group_output_channels, kernel_height, kernel_width, group_input_channels]
- /// dimensions.
- /// @param bias_id - Value ID for the bias tensor, or XNN_INVALID_VALUE_ID for a 2D Convolution Node without a bias. If
- /// present, the bias tensor must be a 1D tensor defined in the @a subgraph with
- /// [groups * group_output_channels] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, groups * group_output_channels] dimensions.
- /// @param flags - binary features of the 2D Deconvolution Node. No supported flags are currently defined.
- enum xnn_status xnn_define_deconvolution_2d(
- xnn_subgraph_t subgraph,
- uint32_t padding_top,
- uint32_t padding_right,
- uint32_t padding_bottom,
- uint32_t padding_left,
- uint32_t adjustment_height,
- uint32_t adjustment_width,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t upsampling_height,
- uint32_t upsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t filter_id,
- uint32_t bias_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Depthwise Convolution Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING
- /// flag is specified.
- /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param kernel_height - kernel (filter) height.
- /// @param kernel_width - kernel (filter) width.
- /// @param subsampling_height - height of subsampling region for convolution output (convolution height stride).
- /// @param subsampling_width - width of subsampling region for convolution output (convolution width stride).
- /// @param dilation_height - dilation of kernel elements along the height dimension.
- /// @param dilation_width - dilation of kernel elements along the width dimension.
- /// @param depth_multiplier - ratio of output channels to input channels.
- /// @param input_channels - number of input channels.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, input_channels] dimensions
- /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph
- /// with [1, kernel_height, kernel_width, input_channels * depth_multiplier] dimensions.
- /// @param bias_id - Value ID for the bias tensor, or XNN_INVALID_VALUE_ID for a 2D Depthwise Convolution Node without
- /// a bias. If present, the bias tensor must be a 1D tensor defined in the @a subgraph with
- /// [input_channels * depth_multiplier] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, input_channels * depth_multiplier] dimensions.
- /// @param flags - binary features of the 2D Depthwise Convolution Node. The only currently supported values is
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING.
- enum xnn_status xnn_define_depthwise_convolution_2d(
- xnn_subgraph_t subgraph,
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t depth_multiplier,
- size_t input_channels,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t filter_id,
- uint32_t bias_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Depth To Space Node 2D and add it to a Subgraph.
- ///
- /// The Depth To Space 2D Node rearranges data from depth into blocks of spatial data (a reverse transform to
- /// Space To Depth). For a given input pixel, an output square of pixels with side @a block_size is formed from values
- /// in the corresponding number of its channels. The output depth is therefore @a block_size x @a block_size times
- /// smaller than that of the input.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param block_size - the size of the spatial block.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, OC * block_size * block_size] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH * block_size, IW * block_size, OC] dimensions.
- /// @param flags - binary features of the input_channels Node. No supported flags are currently defined.
- enum xnn_status xnn_define_depth_to_space_2d(
- xnn_subgraph_t subgraph,
- uint32_t block_size,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- enum xnn_status xnn_define_depth_to_space(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t block_size,
- uint32_t flags);
- /// Define a 1D Global Average Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a dense tensor with 2 or more dimensions
- /// defined in the @a subgraph. Averaging is performed across the second-innermost dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a dense tensor with 2 or more
- /// dimensions defined in the @a subgraph.
- /// @param flags - binary features of the 1D Global Average Pooling Node. The only currently supported value is
- /// XNN_FLAG_REDUCE_DIMS.
- enum xnn_status xnn_define_global_average_pooling_1d(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Global Average Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a dense tensor with 3 or more dimensions
- /// defined in the @a subgraph. Averaging is performed across the second- and third-innermost
- /// dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a dense tensor with 3 or more
- /// dimensions defined in the @a subgraph.
- /// @param flags - binary features of the 2D Global Average Pooling Node. The only currently supported value is
- /// XNN_FLAG_REDUCE_DIMS.
- enum xnn_status xnn_define_global_average_pooling_2d(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 1D Global Sum Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a dense tensor with 2 or more dimensions
- /// defined in the @a subgraph. Averaging is performed across the second-innermost dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a dense tensor with 2 or more
- /// dimensions defined in the @a subgraph.
- /// @param flags - binary features of the 1D Global Sum Pooling Node. The only currently supported value is
- /// XNN_FLAG_REDUCE_DIMS.
- enum xnn_status xnn_define_global_sum_pooling_1d(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Global Sum Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a dense tensor with 3 or more dimensions
- /// defined in the @a subgraph. Averaging is performed across the second- and third-innermost
- /// dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a dense tensor with 3 or more
- /// dimensions defined in the @a subgraph.
- /// @param flags - binary features of the 2D Global Sum Pooling Node. The only currently supported value is
- /// XNN_FLAG_REDUCE_DIMS.
- enum xnn_status xnn_define_global_sum_pooling_2d(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Average Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING
- /// flag is specified.
- /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param pooling_height - pooling (kernel) height.
- /// @param pooling_width - pooling (kernel) width.
- /// @param stride_height - displacing of the pooling window in the vertical dimension of the input pixels corresponding
- /// to vertically adjacent output pixels.
- /// @param stride_width - displacing of the pooling window in the horizontal dimension of the input pixels corresponding
- /// to horizontally adjacent output pixels.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, channels] dimensions
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, channels] dimensions.
- /// @param flags - binary features of the 2D Average Pooling Node. The only currently supported values is
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING.
- enum xnn_status xnn_define_average_pooling_2d(
- xnn_subgraph_t subgraph,
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Fully Connected Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in the
- /// @a subgraph. If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the input tensor must be at least
- /// 1D and its last dimension must match the last dimension of the filter tensor. In particular, if
- /// input is a 2D tensor, it must have [batch_size, input_channels] dimensions.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, the number of elements in the input tensor must be
- /// divisible by the input_channels. The tensor will be first flattened into a 1D tensor of
- /// [num_input_elements] dimensions, then reshaped into a 2D tensor of
- /// [num_input_elements / input_channels, input_channels] dimensions where num_input_elements is the
- /// total number of elements in the input tensor.
- /// @param filter_id - Value ID for the filter tensor. The filter tensor must a 2D tensor defined in the @a subgraph.
- /// If the XNN_FLAG_TRANSPOSE_WEIGHTS flag is not specified, the filter tensor must have
- /// [output_channels, input_channels] dimensions. If the XNN_FLAG_TRANSPOSE_WEIGHTS flag is
- /// specified, the filter tensor must have [input_channels, output_channels] dimensions.
- /// @param bias_id - Value ID for the bias tensor, or XNN_INVALID_VALUE_ID for a Fully Connected Node without a bias.
- /// If present, the bias tensor must be a 1D tensor defined in the @a subgraph with [output_channels]
- /// dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the output tensor must have the same
- /// dimensionality as the input tensor, all its dimensions but the last one must match the
- /// corresponding dimensions of the input tensor, and the last dimensions of the output tensor must
- /// match the first dimension of the filter tensor. In particular, if input is a 2D tensor, output
- /// must be a 2D tensor of [batch_size, output_channels] dimensions.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, output must be a 2D tensor of
- /// [num_input_elements / input_channels, output_channels] dimensions where num_input_elements is the
- /// total number of elements in the input tensor.
- /// @param flags - binary features of the Fully Connected Node. The only currently supported values are
- /// XNN_FLAG_TENSORFLOW_RESHAPE_2D and XNN_FLAG_TRANSPOSE_WEIGHTS.
- enum xnn_status xnn_define_fully_connected(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t filter_id,
- uint32_t bias_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Sparse Fully Connected Node and add it to a Subgraph.
- ///
- /// This operator is experimental, and will be removed in the future.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in the
- /// @a subgraph. If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the input tensor must be at least
- /// 1D and its last dimension must match the last dimension of the filter tensor. In particular, if
- /// input is a 2D tensor, it must have [batch_size, input_channels] dimensions.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, the number of elements in the input tensor must be
- /// divisible by the input_channels. The tensor will be first flattened into a 1D tensor of
- /// [num_input_elements] dimensions, then reshaped into a 2D tensor of
- /// [num_input_elements / input_channels, input_channels] dimensions where num_input_elements is the
- /// total number of elements in the input tensor.
- /// @param filter_id - Value ID for the filter tensor. The filter tensor must a 2D tensor defined in the @a subgraph.
- /// If the XNN_FLAG_TRANSPOSE_WEIGHTS flag is not specified, the filter tensor must have
- /// [output_channels, input_channels] dimensions. If the XNN_FLAG_TRANSPOSE_WEIGHTS flag is
- /// specified, the filter tensor must have [input_channels, output_channels] dimensions.
- /// @param bias_id - Value ID for the bias tensor, or XNN_INVALID_VALUE_ID for a Fully Connected Node without a bias.
- /// If present, the bias tensor must be a 1D tensor defined in the @a subgraph with [output_channels]
- /// dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the output tensor must have the same
- /// dimensionality as the input tensor, all its dimensions but the last one must match the
- /// corresponding dimensions of the input tensor, and the last dimensions of the output tensor must
- /// match the first dimension of the filter tensor. In particular, if input is a 2D tensor, output
- /// must be a 2D tensor of [batch_size, output_channels] dimensions.
- /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, output must be a 2D tensor of
- /// [num_input_elements / input_channels, output_channels] dimensions where num_input_elements is the
- /// total number of elements in the input tensor.
- /// @param flags - binary features of the Fully Connected Node. The only currently supported values are
- /// XNN_FLAG_TENSORFLOW_RESHAPE_2D and XNN_FLAG_TRANSPOSE_WEIGHTS.
- enum xnn_status xnn_define_fully_connected_sparse(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t filter_id,
- uint32_t bias_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Max Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING
- /// flag is specified.
- /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified.
- /// @param pooling_height - pooling (kernel) height.
- /// @param pooling_width - pooling (kernel) width.
- /// @param stride_height - displacing of the pooling window in the vertical dimension of the input pixels corresponding
- /// to vertically adjacent output pixels.
- /// @param stride_width - displacing of the pooling window in the horizontal dimension of the input pixels corresponding
- /// to horizontally adjacent output pixels.
- /// @param dilation_height - dilation of pooling elements along the height dimension.
- /// @param dilation_width - dilation of pooling elements along the width dimension.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, channels] dimensions
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, channels] dimensions.
- /// @param flags - binary features of the 2D Max Pooling Node. The only currently supported values is
- /// XNN_FLAG_TENSORFLOW_SAME_PADDING.
- enum xnn_status xnn_define_max_pooling_2d(
- xnn_subgraph_t subgraph,
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2D ArgMax Pooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_padding_top - implicit zero-padding above 2D input data.
- /// @param input_padding_right - implicit zero-padding to the right of 2D input data.
- /// @param input_padding_bottom - implicit zero-padding below 2D input data.
- /// @param input_padding_left - implicit zero-padding to the left of 2D input data.
- /// @param pooling_height - pooling (kernel) height. Vertical stride between pooling regions match this value.
- /// @param pooling_width - pooling (kernel) width. Horizontal stride between pooling regions match this value.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, channels] dimensions
- /// @param output_value_id - Value ID for the output tensor with the maximum values in the pools. The output tensor must
- /// be a 4D tensor defined in the @a subgraph with [N, OH, OW, channels] dimensions.
- /// @param output_index_id - Value ID for the output tensor with the indexes of the maximum values in the pools. The
- /// output tensor must be a 4D tensor defined in the @a subgraph with [N, OH, OW, channels]
- /// dimensions.
- /// @param flags - binary features of the 2D ArgMax Pooling Node. No supported flags are currently defined.
- enum xnn_status xnn_define_argmax_pooling_2d(
- xnn_subgraph_t subgraph,
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t input_id,
- uint32_t output_value_id,
- uint32_t output_index_id,
- uint32_t flags);
- /// Define a 2D UnPooling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param padding_top - implicit padding above 2D output data.
- /// @param padding_right - implicit padding to the right of 2D output data.
- /// @param padding_bottom - implicit padding below 2D output data.
- /// @param padding_left - implicit padding to the left of 2D output data.
- /// @param pooling_height - height of the pooling window.
- /// @param pooling_width - width of the pooling window.
- /// @param input_value_id - Value ID for the input tensor with the max-pooling values to invert. The input value tensor
- /// must be a 4D tensor defined in the @a subgraph with [N, IH, IW, channels] dimensions.
- /// @param input_index_id - Value ID for the input tensor with the indices of the per-pool maximum values produced by
- /// a 2D UnPooling Node. The input tensor must be a 4D tensor defined in the @a subgraph with
- /// [N, IH, IW, channels] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, OH, OW, channels] dimensions.
- /// @param flags - binary features of the 2D UnPooling Node. No supported flags are currently defined.
- enum xnn_status xnn_define_unpooling_2d(
- xnn_subgraph_t subgraph,
- uint32_t padding_top,
- uint32_t padding_right,
- uint32_t padding_bottom,
- uint32_t padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t input_value_id,
- uint32_t input_index_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Input Add Node and add it to a Subgraph.
- ///
- /// The 2-Input Add Node computes elementwise addition of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Add Node. No supported flags are currently defined.
- enum xnn_status xnn_define_add2(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Input Multiply Node and add it to a Subgraph.
- ///
- /// The 2-Input Multiply Node computes elementwise multiplication of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Multiply Node. No supported flags are currently defined.
- enum xnn_status xnn_define_multiply2(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- // Cap operations applied to logits (Q * K) of attention operator.
- enum xnn_attention_logits_cap_type {
- // No capping.
- xnn_attention_logits_cap_type_none = 0,
- // Cap the absolute values of logits by tanh: tanh(logits / cap) * cap
- xnn_attention_logits_cap_type_tanh
- };
- // Params when the cap type is xnn_attention_logits_cap_type_tanh.
- struct xnn_attention_logits_cap_tanh_params {
- float cap;
- };
- /// Define a Scaled Dot-Product Attention Node and add it to a Subgraph.
- ///
- /// This operator is experimental.
- ///
- /// The Scaled Dot-Product Attention Node computes a multi-head or multi-query scaled dot attention on the query, key,
- /// and value tensors.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param cap_type - type of cap to be applied to the logits.
- /// @param cap_params - parameters for the cap. Must be a pointer to xnn_attention_logits_cap_tanh_params if cap_type
- /// is xnn_attention_logits_cap_type_tanh.
- /// @param query_id - Value ID for the query tensor. The query tensor must be a 3+-dimensional tensor defined in the
- /// @a subgraph with the dimensions as [*, H, T, C], where H/T/C are the heads/tokens/channels, and *
- /// is the 0 or more dimensions treated as batch size.
- /// @param key_id - Value ID for the key tensor. The key tensor must be a 2+--dimensional tensor defined in the
- /// @a subgraph. It can have the same number of dimensions as the query, with the dimensions as
- /// [*, H, U, C] (multi-head), or have 1 less dimension than the query, with the dimensions as
- /// as [*, U, C] (multi-query, number of heads omitted implies single head), where H/U/C are the
- /// heads/key_value_tokens/channels, and * is the 0 or more dimensions treated as batch size. These
- /// batch size dimensions must be the same as query.
- /// @param value_id - Value ID for the value tensor. The value tensor must be a 2+--dimensional tensor defined in the
- /// @a subgraph. It can have the same number of dimensions as the query, with the dimensions as
- /// [*, H, U, D] (multi-head), or have 1 less dimension than the query, with the dimensions as
- /// as [*, U, D] (multi-query, number of heads omitted implies single head), where H/U/D are the
- /// heads/key_value_tokens/value_channels, and * is the 0 or more dimensions treated as batch size.
- /// These batch size dimensions must be the same as query and key.
- /// @param scale_id - Value ID for the scale tensor. The scale tensor must be a 1D tensor defined in the @a subgraph
- /// with [C] dimensions. The query tensor is multiplied with this scale tensor before the dot product
- /// with the key tensor.
- /// @param mask_id - Value ID for the mask tensor. The mask tensor must be a 2D tensor defined in the @a subgraph with
- /// [T, U] dimensions. The mask tensor is added to the logits (query dot value).
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 3+-dimensional tensor defined in the
- /// @a subgraph with the dimensions as [*, H, T, D], where H/T/D are the heads/tokens/value_channels,
- /// and * is the 0 or more dimensions treated as batch size. These batch size dimensions must be the
- /// same as query, key, and value.
- /// @param flags - binary features of the Scaled Dot Product Attention Node. No supported flags are currently defined.
- enum xnn_status xnn_define_scaled_dot_product_attention(
- xnn_subgraph_t subgraph,
- enum xnn_attention_logits_cap_type cap_type,
- const void* cap_params,
- uint32_t query_id,
- uint32_t key_id,
- uint32_t value_id,
- uint32_t scale_id,
- uint32_t mask_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Subtract Node and add it to a Subgraph.
- ///
- /// The Subtract Node computes elementwise subtraction of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Subtract Node. No supported flags are currently defined.
- enum xnn_status xnn_define_subtract(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Divide Node and add it to a Subgraph.
- ///
- /// The Divide Node computes elementwise division of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Divide Node. No supported flags are currently defined.
- enum xnn_status xnn_define_divide(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Input Maximum Node and add it to a Subgraph.
- ///
- /// The 2-Input Maximum Node computes elementwise maximum of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Maximum Node. No supported flags are currently defined.
- enum xnn_status xnn_define_maximum2(
- xnn_subgraph_t subgraph,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Input Minimum Node and add it to a Subgraph.
- ///
- /// The 2-Input Minimum Node computes elementwise minimum of two tensor inputs with numpy broadcasting rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Minimum Node. No supported flags are currently defined.
- enum xnn_status xnn_define_minimum2(
- xnn_subgraph_t subgraph,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Squared Difference Node and add it to a Subgraph.
- ///
- /// The Squared Difference Node computes elementwise squared difference of two tensor inputs with numpy broadcasting
- /// rules.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the second
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in
- /// the @a subgraph with each dimension either equal to the corresponding dimension of the first
- /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along
- /// that dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension
- /// of the two inputs.
- /// @param flags - binary features of the Squared Difference Node. No supported flags are currently defined.
- enum xnn_status xnn_define_squared_difference(
- xnn_subgraph_t subgraph,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Constant Pad Node with static padding specification and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param pre_paddings - number of padding elements to insert before input elements for every dimension. This array
- /// must have as many elements as the number of dimensions in the input tensor.
- /// @param post_paddings - number of padding elements to insert after input elements for every dimension. This array
- /// must have as many elements as the number of dimensions in the input tensor.
- /// @param padding_value - constant value used to initialize padding elements.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor with padding.
- /// @param flags - binary features of the Constant Pad Node. No supported flags are currently defined.
- enum xnn_status xnn_define_static_constant_pad(
- xnn_subgraph_t subgraph,
- const size_t* pre_paddings,
- const size_t* post_paddings,
- float padding_value,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Mean Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param num_reduction_axes - number of axes along which mean is computed.
- /// @param reduction_axes - axes along which mean is computed.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a dense tensor with at least
- /// @a num_reduction_axes dimensions defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a dense tensor defined in the
- /// @a subgraph with @a num_reduction_axes fewer dimensions than the input tensor (if
- /// XNN_FLAG_REDUCE_DIMS is specified), or has same dimension rank but the dimension at
- /// @a reduction_axes reduced to 1 (if XNN_FLAG_REDUCE_DIMS is not specified).
- /// @param flags - binary features of the Mean Node. The only currently supported value is XNN_FLAG_REDUCE_DIMS
- enum xnn_status xnn_define_static_mean(
- xnn_subgraph_t subgraph,
- size_t num_reduction_axes,
- const size_t* reduction_axes,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Input Concatenate Node and add it to a Subgraph.
- ///
- /// The 2-Input Concatenate Node concatenates two tensors along a specified axis.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param axis - the axis to concatenate the two input tensors along
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// second input.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// first input.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a N-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the dimension of both inputs, except the axis
- /// dimension, where it is the sum of the corresponding dimensions of both inputs.
- /// @param flags - binary features of the Concatenate Node. No supported flags are currently defined.
- enum xnn_status xnn_define_concatenate2(
- xnn_subgraph_t subgraph,
- size_t axis,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 3-Input Concatenate Node and add it to a Subgraph.
- ///
- /// The 3-Input Concatenate Node concatenates three tensors along a specified axis.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param axis - the axis to concatenate the three input tensors along
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param input3_id - Value ID for the third input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a N-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the dimension of all inputs, except the axis
- /// dimension, where it is the sum of the corresponding dimensions of all inputs.
- /// @param flags - binary features of the Concatenate Node. No supported flags are currently defined.
- enum xnn_status xnn_define_concatenate3(
- xnn_subgraph_t subgraph,
- size_t axis,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t input3_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 4-Input Concatenate Node and add it to a Subgraph.
- ///
- /// The 4-Input Concatenate Node concatenates four tensors along a specified axis.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param axis - the axis to concatenate the four input tensors along
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param input3_id - Value ID for the third input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param input4_id - Value ID for the fourth input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph with each dimension, except the axis, equal to the corresponding dimension of the
- /// other inputs.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a N-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to the dimension of all inputs, except the axis
- /// dimension, where it is the sum of the corresponding dimensions of all inputs.
- /// @param flags - binary features of the Concatenate Node. No supported flags are currently defined.
- enum xnn_status xnn_define_concatenate4(
- xnn_subgraph_t subgraph,
- size_t axis,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t input3_id,
- uint32_t input4_id,
- uint32_t output_id,
- uint32_t flags);
- enum xnn_status xnn_define_concatenate5(
- xnn_subgraph_t subgraph,
- size_t axis,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t input3_id,
- uint32_t input4_id,
- uint32_t input5_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Copy Node and add it to a Subgraph.
- ///
- /// The Copy Node copies an input tensor to an output tensor.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the first input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Copy Node. No supported flags are currently defined.
- enum xnn_status xnn_define_copy(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a 2-Output Split Node and add it to a Subgraph.
- ///
- /// The 2-Output Split Node splits an input tensor into two output tensors along a specified axis evenly.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param split_dim - the dimension to split the input tensor along
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in the @a
- /// subgraph.
- /// @param output1_id - Value ID for the first output tensor. The output tensor must be an N-dimensional tensor defined
- /// in the @a subgraph with each dimension, except the axis, equal to the corresponding dimension
- /// of the second output. The split_dim dimension is half of the input's split_dim.
- /// @param output2_id - Value ID for the second output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the first output. The split_dim dimension is half of the input's split_dim.
- /// @param flags - binary features of the Split Node. No supported flags are currently defined.
- enum xnn_status xnn_define_even_split2(
- xnn_subgraph_t subgraph,
- size_t split_dim,
- uint32_t input_id,
- uint32_t output1_id,
- uint32_t output2_id,
- uint32_t flags);
- /// Define a 3-Output Split Node and add it to a Subgraph.
- ///
- /// The 3-Output Split Node splits an input tensor into three output tensors along a specified axis evenly.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param split_dim - the dimension to split the input tensor along
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in the @a
- /// subgraph.
- /// @param output1_id - Value ID for the first output tensor. The output tensor must be an N-dimensional tensor defined
- /// in the @a subgraph with each dimension, except the axis, equal to the corresponding dimension
- /// of the second and third output. The split_dim dimension is one third of the input's split_dim.
- /// @param output2_id - Value ID for the second output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the first and third output. The split_dim dimension is one third of the input's
- /// split_dim.
- /// @param output3_id - Value ID for the third output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the second and third output. The split_dim dimension is one third of the input's
- /// split_dim.
- /// @param flags - binary features of the Split Node. No supported flags are currently defined.
- enum xnn_status xnn_define_even_split3(
- xnn_subgraph_t subgraph,
- size_t split_dim,
- uint32_t input_id,
- uint32_t output1_id,
- uint32_t output2_id,
- uint32_t output3_id,
- uint32_t flags);
- /// Define a 4-Output Split Node and add it to a Subgraph.
- ///
- /// The 4-Output Split Node splits an input tensor into four output tensors along a specified axis evenly.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param split_dim - the dimension to split the input tensor along
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in the @a
- /// subgraph.
- /// @param output1_id - Value ID for the first output tensor. The output tensor must be an N-dimensional tensor defined
- /// in the @a subgraph with each dimension, except the axis, equal to the corresponding dimension
- /// of the other output tensors. The split_dim dimension is one fourth of the input's split_dim.
- /// @param output2_id - Value ID for the second output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the other output tensors. The split_dim dimension is one fourth of the input's
- /// split_dim.
- /// @param output3_id - Value ID for the third output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the other output tensors. The split_dim dimension is one fourth of the input's
- /// split_dim.
- /// @param output4_id - Value ID for the fourth output tensor. The output tensor must be an N-dimensional tensor
- /// defined in the @a subgraph with each dimension, except the axis, equal to the corresponding
- /// dimension of the other output tensors. The split_dim dimension is one fourth of the input's
- /// split_dim.
- /// @param flags - binary features of the Split Node. No supported flags are currently defined.
- enum xnn_status xnn_define_even_split4(
- xnn_subgraph_t subgraph,
- size_t split_dim,
- uint32_t input_id,
- uint32_t output1_id,
- uint32_t output2_id,
- uint32_t output3_id,
- uint32_t output4_id,
- uint32_t flags);
- /// Define a Reshape Node with static shape specification and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param num_dims - number of shape dimensions in the output tensor.
- /// @param new_shape - shape dimensions of the output tensor.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor with padding.
- /// @param flags - binary features of the Reshape Node. No supported flags are currently defined.
- enum xnn_status xnn_define_static_reshape(
- xnn_subgraph_t subgraph,
- size_t num_dims,
- const size_t* new_shape,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Node that reshapes a tensor to two dimensions, retaining the
- /// trailing dimension, and add it to a Subgraph.
- ///
- /// This operator is experimental.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be
- /// defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be
- /// defined in the @a subgraph, and its
- /// size must match the shape of the input tensor with
- /// padding.
- /// @param flags - binary features of the Reshape Node. No supported flags are
- /// currently defined.
- enum xnn_status xnn_define_reshape_2d(xnn_subgraph_t subgraph,
- uint32_t input_id, uint32_t output_id,
- uint32_t flags);
- /// Define a 2D Resize Bilinear Node with static output height & width specification and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param new_height - height dimension of the output tensor.
- /// @param new_width - width dimension of the output tensor.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, H, W, C] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, new_height, new_width, C] dimensions.
- /// @param flags - binary features of the 2D Resize Bilinear Node. The only currently supported values are
- /// XNN_FLAG_TENSORFLOW_LEGACY_MODE and XNN_FLAG_ALIGN_CORNERS, which are mutually exclusive.
- enum xnn_status xnn_define_static_resize_bilinear_2d(
- xnn_subgraph_t subgraph,
- size_t new_height,
- size_t new_width,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a PReLU (Parametric ReLU) Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, H, W, channels] dimensions.
- /// @param slope_id - Value ID for the slope tensor. The slope tensor must be a 1D tensor defined in the @a subgraph with
- /// [channels] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, H, W, channels] dimensions.
- /// @param flags - binary features of the PReLU Node. No supported flags are currently defined.
- enum xnn_status xnn_define_prelu(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t slope_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a RoPE (Rotary Positional Embeddings) Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param max_tokens - maximum possible number of tokens (maximum sequence length) of the input/output tensors.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [batch, tokens, heads, channels] dimensions.
- /// @param weights_id - Value ID for the weights tensor. The weights tensor must be a 2D tensor defined in the
- /// @a subgraph with [max_tokens, channels] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [batch, tokens, heads, channels] dimensions.
- /// @param flags - binary features of the RoPE Node. No supported flags are currently defined.
- enum xnn_status xnn_define_rope(
- xnn_subgraph_t subgraph,
- size_t max_sequence_size,
- uint32_t input_id,
- uint32_t weights_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Abs Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Abs Node. No supported flags are currently defined.
- enum xnn_status xnn_define_abs(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Bankers' Rounding Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Bankers' Rounding Node. No supported flags are currently defined.
- enum xnn_status xnn_define_bankers_rounding(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Batch Matrix Multiply Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph. It must be at least 3D. The first N-2 dimensions must match the second input
- /// tensor. The last 2 dimensions are [M, K]. If XNN_FLAG_TRANSPOSE_B is not specified, the last
- /// dimension must match the second last dimension of the second input tensor. If
- /// XNN_FLAG_TRANSPOSE_B is specified, the last dimension must match the last dimension of the
- /// second input tensor.
- /// @param input2_id - Value ID for the second input tensor. The input tensor must be an N-dimensional tensor defined
- /// in the @a subgraph. It must be at least 3D. The first N-2 dimensions must match the first input
- /// tensor. If XNN_FLAG_TRANSPOSE_B is not specified, the last 2 dimensions are [K, N], and the
- /// second last dimension must match the last dimension of the first input tensor. If
- /// XNN_FLAG_TRANSPOSE_B is specified, the last 2 dimensions are [N, K], and the last dimension must
- /// match the last dimension of the first input tensor.
- /// @param output_id - Value ID for the output tensor. The output tensor must be an N-dimensional tensor defined in the
- /// @a subgraph. It must be at least 3D. The first N-2 dimensions must match the first and second
- /// input tensors . The last 2 dimensions must be [M, N].
- /// @param flags - binary features of the Batch Matrix Multiply Node. The only currently supported value is
- /// XNN_FLAG_TRANSPOSE_B.
- enum xnn_status xnn_define_batch_matrix_multiply(
- xnn_subgraph_t subgraph,
- uint32_t input1_id,
- uint32_t input2_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Ceiling Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Ceiling Node. No supported flags are currently defined.
- enum xnn_status xnn_define_ceiling(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Clamp Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param output_min - lower bound for clipping output values.
- /// @param output_max - upper bound for clipping output values.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Clamp Node. No supported flags are currently defined.
- enum xnn_status xnn_define_clamp(
- xnn_subgraph_t subgraph,
- float output_min,
- float output_max,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define an ELU (Exponential Linear Unit) Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param alpha - scale factor for negative output elements.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the ELU Node. No supported flags are currently defined.
- enum xnn_status xnn_define_elu(
- xnn_subgraph_t subgraph,
- float alpha,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Floor Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Floor Node. No supported flags are currently defined.
- enum xnn_status xnn_define_floor(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a HardSwish Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the HardSwish Node. No supported flags are currently defined.
- enum xnn_status xnn_define_hardswish(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Leaky ReLU Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param negative_slope - scale factor for negative input elements.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Leaky ReLU Node. No supported flags are currently defined.
- enum xnn_status xnn_define_leaky_relu(
- xnn_subgraph_t subgraph,
- float negative_slope,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Negate Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Negate Node. No supported flags are currently defined.
- enum xnn_status xnn_define_negate(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Sigmoid Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Sigmoid Node. No supported flags are currently defined.
- enum xnn_status xnn_define_sigmoid(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a SoftMax Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph, and have at
- /// least one dimension.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the SoftMax Node. No supported flags are currently defined.
- enum xnn_status xnn_define_softmax(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Space To Depth 2D Node and add it to a Subgraph.
- ///
- /// The Space To Depth 2D Node rearranges blocks of spatial data into blocks (a reverse transform to Depth To Space 2D).
- /// For a given input pixel, an output square of pixels with side @a block_size is formed from values in the
- /// corresponding number of its channels. The output depth is therefore @a block_size x @a block_size times greater
- /// than that of the input.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param block_size - the size of the spatial block.
- /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH * block_size, IW * block_size, OC] dimensions.
- /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph
- /// with [N, IH, IW, OC * block_size * block_size] dimensions.
- /// @param flags - binary features of the input_channels Node. No supported flags are currently defined.
- enum xnn_status xnn_define_space_to_depth_2d(
- xnn_subgraph_t subgraph,
- uint32_t block_size,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Square Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Square Node. No supported flags are currently defined.
- enum xnn_status xnn_define_square(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Square Root Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Square Root Node. No supported flags are currently defined.
- enum xnn_status xnn_define_square_root(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Reciprocal Square Root Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be
- /// defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be
- /// defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Square Root Node. No supported flags
- /// are currently defined.
- enum xnn_status xnn_define_reciprocal_square_root(xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Static Slice Node add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param num_dims - number of shape dimensions in the input and output tensor.
- /// @param offsets - offsets in each dimension of the input tensor. This array must have @a num_dims elements.
- /// @param sizes - size of each dimension in output tensor. This array must have @a num_dims elements.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// dimensions must match @a sizes.
- /// @param flags - binary features of the Static Slice Node. No supported flags are currently defined.
- enum xnn_status xnn_define_static_slice(
- xnn_subgraph_t subgraph,
- size_t num_dims,
- const size_t* offsets,
- const size_t* sizes,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Static Transpose Node and add it to a Subgraph.
- ///
- /// The Static Transpose Node applies a generalized transpose to the input tensor using the permuation in perm.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be an N-dimensional tensor defined in
- /// the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be an N-dimensional tensor defined
- /// in the @a subgraph with each dimension equal to its corresponding permuted input dimension.
- /// @param num_dims - the number of permutation dimensions. This must be equal to the number of input dimensions.
- /// @param perm - The permutation of the axis of the input tensor. The perm array must must contain 0 to N-1 in the
- /// permuted order.
- /// @param flags - binary features of the Static Transpose Node. No supported flags are currently defined.
- enum xnn_status xnn_define_static_transpose(
- xnn_subgraph_t subgraph,
- size_t num_dims,
- const size_t* perm,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Define a Tanh Node and add it to a Subgraph.
- ///
- /// @param subgraph - a Subgraph object that will own the created Node.
- /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph.
- /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its
- /// shape must match the shape of the input tensor.
- /// @param flags - binary features of the Tanh Node. No supported flags are currently defined.
- enum xnn_status xnn_define_tanh(
- xnn_subgraph_t subgraph,
- uint32_t input_id,
- uint32_t output_id,
- uint32_t flags);
- /// Code cache is a cache for JIT generated code.
- typedef struct xnn_code_cache* xnn_code_cache_t;
- /// Weights cache can be finalized in these ways:
- enum xnn_weights_cache_finalization_kind {
- /// Weights cache is finalized, no insert operations into the weights cache is allowed, even if the "inserted"
- /// weights already exist in thee cache. Weights cache memory will also be trimmed to page boundary and set to
- /// read-only (to prevent writes).
- xnn_weights_cache_finalization_kind_hard,
- /// Weights cache will be finalized with some extra space at the end, this allows for "inserting" into the cache only
- /// if the weights are already in the cache, and errors on inserting uncached weights. There is memory overhead.
- xnn_weights_cache_finalization_kind_soft,
- };
- /// A combination of multiple factors to uniquely locate the weights cache.
- struct xnn_weights_cache_look_up_key {
- /// The unique seed for each ukernel. It is guaranteed that each ukernel provides
- /// a consistent and identical seed.
- uint32_t seed;
- /// Pointer to the original kernel.
- const void* kernel;
- /// Pointer to the original bias, could be NULL.
- const void* bias;
- };
- /// A group of function pointers to manage weights cache. All functions may be
- /// called on multi threads.
- struct xnn_weights_cache_provider {
- /// User-specified pointer that will be passed as-is to all functions in this
- /// structure.
- void* context;
- /// Looks up the tuple of {cache_key, kernel, bias} in the cache. If it is found,
- /// returns the offset to the found entry for reuse. Otherwise, returns SIZE_MAX.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- /// @param cache_key - The key used to locate the weights cache entry.
- size_t (*look_up)(void* context, const struct xnn_weights_cache_look_up_key* cache_key);
- /// Ensures that cache has enough space for `n` bytes. Returns the address to
- /// store weight cache. Returns NULL if fails to reserve space.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- /// @param n - size to be reserved.
- void* (*reserve_space)(void* context, size_t n);
- /// Looks up packed weights at `ptr` in the cache. If it is found, reuse it.
- /// Otherwise, it is added to the cache. Returns the offset to the cache.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- /// @param cache_key - The key used to locate the weights cache entry.
- /// @param ptr - pointer pointing to the packed weight.
- /// @param size - size of the packed weight.
- size_t (*look_up_or_insert)(void* context, const struct xnn_weights_cache_look_up_key* cache_key, void* ptr, size_t size);
- /// Returns whether the cache is finalized.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- bool (*is_finalized)(void* context);
- /// Returns the absolute pointer corresponding to `offset`, where the offset is returned from
- /// `look_up` or `get_or_insert`. This function must be called after finalize.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- /// @param offset - offset to the start of internal buffer
- void* (*offset_to_addr)(void* context, size_t offset);
- /// Destroy a weights cache object, as well as memory used for the cache.
- /// @param context - The user-specified pointer from xnn_weights_cache_provider structure.
- enum xnn_status (*delete_cache)(void* context);
- };
- /// Weights cache is a cache for packed weights. It can be reused between runtimes.
- typedef struct xnn_weights_cache_provider* xnn_weights_cache_t;
- /// Create a weights cache object specifying the initial size of weights cache (in bytes).
- ///
- /// @param[in] size - initial capacity of the weights cache (in bytes), i.e. it can hold size bytes without growing.
- /// @param weights_cache_out - pointer to the variable that will be initialized to a handle to the weights cache provider
- /// upon successful return. Once created, the weights cache provider can be shared between
- /// different Runtime objects.
- enum xnn_status xnn_create_weights_cache_with_size(size_t size, xnn_weights_cache_t* weights_cache_out);
- enum xnn_status xnn_create_weights_cache(xnn_weights_cache_t* weights_cache_out);
- /// Finalizes the weights cache. The kind of finalization is specified by `finalization_kind`.
- /// @param weights_cache - the weights cache object to finalize.
- /// @param finalization_kind - the kind of finalization.
- enum xnn_status xnn_finalize_weights_cache(
- xnn_weights_cache_t weights_cache,
- enum xnn_weights_cache_finalization_kind finalization_kind);
- /// Destroy a weights cache object, as well as memory used for the cache.
- /// @param weights_cache - the weights cache object to destroy.
- enum xnn_status xnn_delete_weights_cache(xnn_weights_cache_t weights_cache);
- typedef struct xnn_workspace* xnn_workspace_t;
- /// Create a workspace object.
- /// @param workspace_out - pointer to the variable that will be initialized to a handle to the workspace object upon
- /// successful return. Once created, the workspace can be shared between different Runtime
- /// objects.
- enum xnn_status xnn_create_workspace(xnn_workspace_t* workspace_out);
- /// Destroy a workspace object, as well as memory used by the workspace. Object destruction can be deferred until all
- /// Runtime objects created with this workspace are destroyed.
- /// @param workspace - the workspace object to destroy.
- enum xnn_status xnn_release_workspace(xnn_workspace_t workspace);
- /// Runtime is a combination of an execution plan for subgraph Nodes and a memory manager for subgraph Values.
- typedef struct xnn_runtime* xnn_runtime_t;
- enum xnn_profile_info {
- /// Returns a size_t containing the number of operators.
- xnn_profile_info_num_operators,
- /// Returns a char[] containing the null character separated names of all operators.
- xnn_profile_info_operator_name,
- /// Returns a uint64_t[] with the runtimes of all operators in the same order as xnn_profile_info_operator_name.
- xnn_profile_info_operator_timing,
- };
- /// Return profile information for all operators.
- ///
- /// @param runtime - a Runtime object created with @ref xnn_create_runtime, @ref xnn_create_runtime_v2 or
- /// @ref xnn_create_runtime_v3.
- /// @param param_name - type of profile information required.
- /// @param param_value_size - the size in bytes of memory pointed to by param_value. If this is not sufficient then
- /// param_value_size_ret will be set to the required size and xnn_status_out_of_memory will be
- /// returned.
- /// @param param_value - a pointer to memory location where appropriate values for a given param_value will be written.
- /// @param param_value_size_ret - returns number of bytes required to write the result if param_value_size is not
- /// sufficient.
- enum xnn_status xnn_get_runtime_profiling_info(xnn_runtime_t runtime,
- enum xnn_profile_info param_name,
- size_t param_value_size,
- void* param_value,
- size_t* param_value_size_ret);
- /// Create a Runtime object from a subgraph.
- ///
- /// @param subgraph - a Subgraph object with all Values and Nodes that would be handled by the runtime. No Values or
- /// Nodes can be added to the runtime once it is constructed.
- /// @param weights_cache - a cache for packed weights. The runtime will look up and reuse packed weights in this cache,
- /// this will reduce memory allocated for packed weights.
- /// @param workspace - a workspace to hold internal tensors. The runtime will allocate space used for internal tensors
- /// and track them using workspace. Workspace can be shared and reused across different runtimes. If
- /// workspace is NULL, there will be no sharing: each runtime has its own workspace.
- /// @param threadpool - the thread pool to be used for parallelisation of computations in the runtime. If the thread
- /// pool is NULL, the computation would run on the caller thread without parallelization.
- /// @param flags - binary features of the runtime. The only currently supported values are
- /// XNN_FLAG_HINT_SPARSE_INFERENCE, XNN_FLAG_HINT_FP16_INFERENCE, XNN_FLAG_FORCE_FP16_INFERENCE,
- /// XNN_FLAG_YIELD_WORKERS, and XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER. If XNN_FLAG_YIELD_WORKERS is
- /// specified, worker threads would be yielded to the system scheduler after processing the last operator
- /// in the Runtime. If XNN_FLAG_TRANSIENT_INDIRECTION_BUFFER is specified, convolution operators will
- /// initialize indirection buffers on each inference run using temporary memory in the workspace, instead
- /// of initializing persistent indirection buffers once.
- /// @param runtime_out - pointer to the variable that will be initialized with a handle to the Runtime object upon
- /// successful return. Once constructed, the Runtime object is independent of the Subgraph object
- /// used to create it.
- enum xnn_status xnn_create_runtime_v4(
- xnn_subgraph_t subgraph,
- xnn_weights_cache_t weights_cache,
- xnn_workspace_t workspace,
- pthreadpool_t threadpool,
- uint32_t flags,
- xnn_runtime_t* runtime_out);
- enum xnn_status xnn_create_runtime_v3(
- xnn_subgraph_t subgraph,
- xnn_weights_cache_t weights_cache,
- pthreadpool_t threadpool,
- uint32_t flags,
- xnn_runtime_t* runtime_out);
- enum xnn_status xnn_create_runtime_v2(
- xnn_subgraph_t subgraph,
- pthreadpool_t threadpool,
- uint32_t flags,
- xnn_runtime_t* runtime_out);
- enum xnn_status xnn_create_runtime(
- xnn_subgraph_t subgraph,
- xnn_runtime_t* runtime_out);
- struct xnn_external_value {
- uint32_t id;
- void* data;
- };
- /// Reshape an external value.
- ///
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be
- /// created for the Value.
- /// @param num_dims - number of dimensions in the shape.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL.
- /// XNNPACK does not keep any pointers to this array after the function returns.
- enum xnn_status xnn_reshape_external_value(
- xnn_runtime_t runtime,
- uint32_t external_id,
- size_t num_dims,
- const size_t* dims);
- /// Get the external value shape.
- ///
- /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on
- /// the Subgraph creation. The external ID can not be XNN_INVALID_VALUE_ID.
- /// @param num_dims - A valid pointer into which the number of dimensions in the shape will be written. It can not be larger than XNN_MAX_TENSOR_DIMS.
- /// @param dims - pointer to an array of @a num_dims shape dimensions. This pointer can't be NULL. It must be large enough to hold
- /// at least @a num_dims elements. XNNPACK does not keep any pointers to this array after the function returns.
- enum xnn_status xnn_get_external_value_shape(
- xnn_runtime_t runtime,
- uint32_t external_id,
- size_t* num_dims,
- size_t* dims);
- /// Reshape the XNNPACK runtime.
- ///
- /// Propgates the shapes of input tensors through the graph to determine the shapes of intermediate and output tensors.
- /// Memory is allocated if required. Output tensor shapes are returned by xnn_get_external_value_shape.
- ///
- /// @param runtime - a Runtime object created with @ref xnn_create_runtime or @ref xnn_create_runtime_v2.
- enum xnn_status xnn_reshape_runtime(
- xnn_runtime_t runtime);
- /// Deprecated. Use xnn_reshape_runtime and xnn_setup_runtime_v2.
- ///
- /// Setup data pointers for external inputs and outputs in a Runtime object and
- /// allocate memory.
- ///
- /// @param runtime - a Runtime object created with @ref xnn_create_runtime or @ref xnn_create_runtime_v2.
- /// @param num_external_values - the number of external inputs and outputs specified in this call. This number must
- /// match the number of external inputs and outputs in the runtime, i.e. all external
- /// inputs and outputs in the runtime must be specified in one call.
- /// @param external_values - array with location information for all external inputs and outputs in the runtime.
- enum xnn_status xnn_setup_runtime(
- xnn_runtime_t runtime,
- size_t num_external_values,
- const struct xnn_external_value* external_values);
- /// Setup data pointers for external inputs and outputs in a Runtime object.
- /// Should be called after xnn_reshape_runtime.
- ///
- /// @param runtime - a Runtime object created with @ref xnn_create_runtime or @ref xnn_create_runtime_v2.
- /// @param num_external_values - the number of external inputs and outputs specified in this call. This number must
- /// match the number of external inputs and outputs in the runtime, i.e. all external
- /// inputs and outputs in the runtime must be specified in one call.
- /// @param external_values - array with location information for all external inputs and outputs in the runtime.
- enum xnn_status xnn_setup_runtime_v2(
- xnn_runtime_t runtime,
- size_t num_external_values,
- const struct xnn_external_value* external_values);
- /// Execute forward pass for all operators in the runtime.
- ///
- /// @param runtime - the Runtime object with the execution plan to invoke.
- enum xnn_status xnn_invoke_runtime(
- xnn_runtime_t runtime);
- /// Destroy a Runtime object, as well as operators and memory associated with it.
- ///
- /// @param runtime - the Runtime object to destroy.
- enum xnn_status xnn_delete_runtime(
- xnn_runtime_t runtime);
- typedef struct xnn_operator* xnn_operator_t;
- enum xnn_status xnn_run_operator(
- xnn_operator_t op,
- pthreadpool_t threadpool);
- enum xnn_status xnn_delete_operator(
- xnn_operator_t op);
- /// Operator API:
- /// - create operator will create and populate a xnn_operator_t
- /// - reshape operator will update fields in xnn_operator_t with shape/dimensions and parallelization information
- /// - setup operator will update pointers to input and outputs
- /// Each supported operator must have a create, reshape, and setup function. (Optionally a run function.)
- /// Operators listed below are in alphabetical order by operator name; within each operator, we sort alphabetically by
- /// data layout and type. We also group create, reshape, setup (and optionally run) functions of each operator together.
- enum xnn_status xnn_create_abs_nc_f16(
- uint32_t flags,
- xnn_operator_t* abs_op_out);
- enum xnn_status xnn_reshape_abs_nc_f16(
- xnn_operator_t abs_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_abs_nc_f16(
- xnn_operator_t abs_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_abs_nc_f32(
- uint32_t flags,
- xnn_operator_t* abs_op_out);
- enum xnn_status xnn_reshape_abs_nc_f32(
- xnn_operator_t abs_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_abs_nc_f32(
- xnn_operator_t abs_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_abs_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_add_nd_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* add_op_out);
- enum xnn_status xnn_reshape_add_nd_f16(
- xnn_operator_t add_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_add_nd_f16(
- xnn_operator_t add_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_add_nd_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* add_op_out);
- enum xnn_status xnn_reshape_add_nd_f32(
- xnn_operator_t add_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_add_nd_f32(
- xnn_operator_t add_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_add_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- float output_min,
- float output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_add_nd_qs8(
- int8_t input1_zero_point,
- float input1_scale,
- int8_t input2_zero_point,
- float input2_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* add_op_out);
- enum xnn_status xnn_reshape_add_nd_qs8(
- xnn_operator_t add_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_add_nd_qs8(
- xnn_operator_t add_op,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output);
- enum xnn_status xnn_run_add_nd_qs8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- int8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- int8_t input2_zero_point,
- float input2_scale,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_add_nd_qu8(
- uint8_t input1_zero_point,
- float input1_scale,
- uint8_t input2_zero_point,
- float input2_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* add_op_out);
- enum xnn_status xnn_reshape_add_nd_qu8(
- xnn_operator_t add_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_add_nd_qu8(
- xnn_operator_t add_op,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output);
- enum xnn_status xnn_run_add_nd_qu8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- uint8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- uint8_t input2_zero_point,
- float input2_scale,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_argmax_pooling2d_nhwc_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t flags,
- xnn_operator_t* argmax_pooling_op_out);
- enum xnn_status xnn_reshape_argmax_pooling2d_nhwc_f32(
- xnn_operator_t argmax_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_argmax_pooling2d_nhwc_f32(
- xnn_operator_t argmax_pooling_op,
- void* workspace,
- const float* input,
- float* output,
- uint32_t* index);
- enum xnn_status xnn_create_average_pooling2d_nhwc_f16(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* average_pooling_op_out);
- enum xnn_status xnn_reshape_average_pooling2d_nhwc_f16(
- xnn_operator_t average_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_average_pooling2d_nhwc_f16(
- xnn_operator_t average_pooling_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_average_pooling2d_nhwc_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* average_pooling_op_out);
- enum xnn_status xnn_reshape_average_pooling2d_nhwc_f32(
- xnn_operator_t average_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_average_pooling2d_nhwc_f32(
- xnn_operator_t average_pooling_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_average_pooling2d_nhwc_qu8(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint8_t input_zero_point,
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* average_pooling_op_out);
- enum xnn_status xnn_reshape_average_pooling2d_nhwc_qu8(
- xnn_operator_t average_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_average_pooling2d_nhwc_qu8(
- xnn_operator_t average_pooling_op,
- void* workspace,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_bankers_rounding_nc_f16(
- uint32_t flags,
- xnn_operator_t* rounding_op_out);
- enum xnn_status xnn_reshape_bankers_rounding_nc_f16(
- xnn_operator_t rounding_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_bankers_rounding_nc_f16(
- xnn_operator_t rounding_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_bankers_rounding_nc_f32(
- uint32_t flags,
- xnn_operator_t* rounding_op_out);
- enum xnn_status xnn_reshape_bankers_rounding_nc_f32(
- xnn_operator_t rounding_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_bankers_rounding_nc_f32(
- xnn_operator_t rounding_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_bankers_rounding_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_batch_matrix_multiply_nc_f16(
- uint32_t flags,
- xnn_operator_t* batch_matrix_multiply_op);
- enum xnn_status xnn_reshape_batch_matrix_multiply_nc_f16(
- xnn_operator_t batch_matrix_multiply_op,
- size_t batch_size,
- size_t m,
- size_t k,
- size_t n,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_batch_matrix_multiply_nc_f16(
- xnn_operator_t batch_matrix_multiply_op,
- void* workspace,
- const void* lhs_input,
- const void* rhs_input,
- void* output);
- enum xnn_status xnn_create_batch_matrix_multiply_nc_f32(
- uint32_t flags,
- xnn_operator_t* batch_matrix_multiply_op);
- enum xnn_status xnn_reshape_batch_matrix_multiply_nc_f32(
- xnn_operator_t batch_matrix_multiply_op,
- size_t batch_size,
- size_t m,
- size_t k,
- size_t n,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_batch_matrix_multiply_nc_f32(
- xnn_operator_t batch_matrix_multiply_op,
- void* workspace,
- const float* lhs_input,
- const float* rhs_input,
- float* output);
- enum xnn_status xnn_create_ceiling_nc_f16(
- uint32_t flags,
- xnn_operator_t* ceiling_op_out);
- enum xnn_status xnn_reshape_ceiling_nc_f16(
- xnn_operator_t ceiling_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_ceiling_nc_f16(
- xnn_operator_t ceiling_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_ceiling_nc_f32(
- uint32_t flags,
- xnn_operator_t* ceiling_op_out);
- enum xnn_status xnn_run_ceiling_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_reshape_ceiling_nc_f32(
- xnn_operator_t ceiling_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_ceiling_nc_f32(
- xnn_operator_t ceiling_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_channel_shuffle_nc_x8(
- size_t groups,
- size_t group_channels,
- size_t input_stride,
- size_t output_stride,
- uint32_t flags,
- xnn_operator_t* channel_shuffle_op_out);
- enum xnn_status xnn_reshape_channel_shuffle_nc_x8(
- xnn_operator_t channel_shuffle_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_channel_shuffle_nc_x8(
- xnn_operator_t channel_shuffle_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_channel_shuffle_nc_x32(
- size_t groups,
- size_t group_channels,
- size_t input_stride,
- size_t output_stride,
- uint32_t flags,
- xnn_operator_t* channel_shuffle_op_out);
- enum xnn_status xnn_reshape_channel_shuffle_nc_x32(
- xnn_operator_t channel_shuffle_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_channel_shuffle_nc_x32(
- xnn_operator_t channel_shuffle_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_clamp_nc_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* clamp_op_out);
- enum xnn_status xnn_reshape_clamp_nc_f16(
- xnn_operator_t clamp_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_clamp_nc_f16(
- xnn_operator_t clamp_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_clamp_nc_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* clamp_op_out);
- enum xnn_status xnn_reshape_clamp_nc_f32(
- xnn_operator_t clamp_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_clamp_nc_f32(
- xnn_operator_t clamp_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_clamp_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- float output_min,
- float output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_clamp_nc_s8(
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* clamp_op_out);
- enum xnn_status xnn_reshape_clamp_nc_s8(
- xnn_operator_t clamp_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_clamp_nc_s8(
- xnn_operator_t clamp_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_clamp_nc_u8(
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* clamp_op_out);
- enum xnn_status xnn_reshape_clamp_nc_u8(
- xnn_operator_t clamp_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_clamp_nc_u8(
- xnn_operator_t clamp_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_constant_pad_nd_x8(
- const void* padding_value,
- uint32_t flags,
- xnn_operator_t* constant_pad_op_out);
- enum xnn_status xnn_reshape_constant_pad_nd_x8(
- xnn_operator_t constant_pad_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_padding,
- const size_t* post_padding,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_constant_pad_nd_x8(
- xnn_operator_t constant_pad_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_constant_pad_nd_x8(
- uint32_t flags,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_paddings,
- const size_t* post_paddings,
- const void* input,
- void* output,
- const void* padding_value,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_constant_pad_nd_x16(
- const void* padding_value,
- uint32_t flags,
- xnn_operator_t* constant_pad_op_out);
- enum xnn_status xnn_reshape_constant_pad_nd_x16(
- xnn_operator_t constant_pad_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_padding,
- const size_t* post_padding,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_constant_pad_nd_x16(
- xnn_operator_t constant_pad_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_constant_pad_nd_x16(
- uint32_t flags,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_paddings,
- const size_t* post_paddings,
- const void* input,
- void* output,
- const void* padding_value,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_constant_pad_nd_x32(
- const void* padding_value,
- uint32_t flags,
- xnn_operator_t* constant_pad_op_out);
- enum xnn_status xnn_reshape_constant_pad_nd_x32(
- xnn_operator_t constant_pad_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_padding,
- const size_t* post_padding,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_constant_pad_nd_x32(
- xnn_operator_t constant_pad_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_constant_pad_nd_x32(
- uint32_t flags,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* pre_paddings,
- const size_t* post_paddings,
- const void* input,
- void* output,
- const void* padding_value,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_f16_f32(
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f16_f32(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_f16_f32(
- xnn_operator_t convert_op,
- const void* input,
- float* output);
- enum xnn_status xnn_run_convert_nc_f16_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const void* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_f16_qd8(
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f16_qd8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- // quantization_params must be padded with at least XNN_EXTRA_QUANTIZATION_PARAMS entries.
- enum xnn_status xnn_setup_convert_nc_f16_qd8(
- xnn_operator_t convert_op,
- const void* input,
- int8_t* output,
- struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_create_convert_nc_f32_qd8(
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f32_qd8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- // quantization_params must be padded with at least XNN_EXTRA_QUANTIZATION_PARAMS entries.
- enum xnn_status xnn_setup_convert_nc_f32_qd8(
- xnn_operator_t convert_op,
- const float* input,
- int8_t* output,
- struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_create_convert_nc_f32_f16(
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f32_f16(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_f32_f16(
- xnn_operator_t convert_op,
- const float* input,
- void* output);
- enum xnn_status xnn_run_convert_nc_f32_f16(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- void* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_f32_qs8(
- float output_scale,
- int8_t output_zero_point,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f32_qs8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_f32_qs8(
- xnn_operator_t convert_op,
- const float* input,
- int8_t* output);
- enum xnn_status xnn_run_convert_nc_f32_qs8(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- int8_t* output,
- float output_scale,
- int8_t output_zero_point,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_f32_qu8(
- float output_scale,
- uint8_t output_zero_point,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_f32_qu8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_f32_qu8(
- xnn_operator_t convert_op,
- const float* input,
- uint8_t* output);
- enum xnn_status xnn_run_convert_nc_f32_qu8(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- uint8_t* output,
- float output_scale,
- uint8_t output_zero_point,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_qs8(
- float input_scale,
- int8_t input_zero_point,
- float output_scale,
- int8_t output_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qs8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qs8(
- xnn_operator_t convert_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_convert_nc_qs8_f16(
- float input_scale,
- int8_t input_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qs8_f16(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qs8_f16(
- xnn_operator_t convert_op,
- const int8_t* input,
- void* output);
- enum xnn_status xnn_create_convert_nc_qs8_f32(
- float input_scale,
- int8_t input_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qs8_f32(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qs8_f32(
- xnn_operator_t convert_op,
- const int8_t* input,
- float* output);
- enum xnn_status xnn_run_convert_nc_qs8_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const int8_t* input,
- float* output,
- float input_scale,
- int8_t input_zero_point,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_qs16_qs8(
- float input_scale,
- float output_scale,
- int8_t output_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qs16_qs8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qs16_qs8(
- xnn_operator_t convert_op,
- const int16_t* input,
- int8_t* output);
- enum xnn_status xnn_run_convert_nc_qs16_qs8(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const int16_t* input,
- int8_t* output,
- float input_scale,
- float output_scale,
- int8_t output_zero_point,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convert_nc_qu8(
- float input_scale,
- uint8_t input_zero_point,
- float output_scale,
- uint8_t output_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qu8(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qu8(
- xnn_operator_t convert_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_convert_nc_qu8_f32(
- float input_scale,
- uint8_t input_zero_point,
- uint32_t flags,
- xnn_operator_t* convert_op_out);
- enum xnn_status xnn_reshape_convert_nc_qu8_f32(
- xnn_operator_t convert_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convert_nc_qu8_f32(
- xnn_operator_t convert_op,
- const uint8_t* input,
- float* output);
- enum xnn_status xnn_run_convert_nc_qu8_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const uint8_t* input,
- float* output,
- float input_scale,
- uint8_t input_zero_point,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_convolution2d_nchw_f16(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- const void* kernel,
- const void* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nchw_f16(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nchw_f16(
- xnn_operator_t convolution_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_convolution2d_nchw_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- const float* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nchw_f32(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nchw_f32(
- xnn_operator_t convolution_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_convolution2d_nhwc_f16(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- const void* kernel,
- const void* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nhwc_f16(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nhwc_f16(
- xnn_operator_t convolution_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_convolution2d_nhwc_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- const float* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- // Forward declare.
- struct xnn_post_operation;
- /// Create a convolution operator with a number of post operations. The
- /// convolution operator created using this function does not have output_min
- /// and output_max. The list of operators in post_operations will be applied in
- /// order. Convolution with post operations is only supported on JIT platforms
- /// and when JIT is enabled.
- enum xnn_status xnn_create_fused_convolution2d_nhwc_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- const float* kernel,
- const float* bias,
- size_t num_post_operations,
- struct xnn_post_operation* post_operations,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nhwc_f32(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nhwc_f32(
- xnn_operator_t convolution_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_convolution2d_nhwc_qd8_f16_qc8w(
- uint32_t input_padding_top, uint32_t input_padding_right,
- uint32_t input_padding_bottom, uint32_t input_padding_left,
- uint32_t kernel_height, uint32_t kernel_width, uint32_t subsampling_height,
- uint32_t subsampling_width, uint32_t dilation_height,
- uint32_t dilation_width, uint32_t groups, size_t group_input_channels,
- size_t group_output_channels, size_t input_channel_stride,
- size_t output_channel_stride, const float* kernel_scale,
- const int8_t* kernel, const float* bias, float output_min, float output_max,
- uint32_t flags, xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache, xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_create_convolution2d_nhwc_qd8_f32_qc8w(
- uint32_t input_padding_top, uint32_t input_padding_right,
- uint32_t input_padding_bottom, uint32_t input_padding_left,
- uint32_t kernel_height, uint32_t kernel_width, uint32_t subsampling_height,
- uint32_t subsampling_width, uint32_t dilation_height,
- uint32_t dilation_width, uint32_t groups, size_t group_input_channels,
- size_t group_output_channels, size_t input_channel_stride,
- size_t output_channel_stride, const float* kernel_scale,
- const int8_t* kernel, const float* bias, float output_min, float output_max,
- uint32_t flags, xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache, xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_create_convolution2d_nhwc_qs8(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- int8_t input_zero_point,
- float input_scale,
- float kernel_scale,
- const int8_t* kernel,
- const int32_t* bias,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nhwc_qd8_f16_qc8w(
- xnn_operator_t convolution_op, size_t batch_size, size_t input_height,
- size_t input_width, size_t* workspace_size, size_t* workspace_alignment,
- size_t* output_height_out, size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_reshape_convolution2d_nhwc_qd8_f32_qc8w(
- xnn_operator_t convolution_op, size_t batch_size, size_t input_height,
- size_t input_width, size_t* workspace_size, size_t* workspace_alignment,
- size_t* output_height_out, size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_reshape_convolution2d_nhwc_qs8(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nhwc_qd8_f16_qc8w(
- xnn_operator_t convolution_op, void* workspace, const int8_t* input,
- void* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_setup_convolution2d_nhwc_qd8_f32_qc8w(
- xnn_operator_t convolution_op, void* workspace, const int8_t* input,
- float* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_setup_convolution2d_nhwc_qs8(
- xnn_operator_t convolution_op,
- void* workspace,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_convolution2d_nhwc_qs8_qc8w(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- int8_t input_zero_point,
- float input_scale,
- const float* kernel_scale,
- const int8_t* kernel,
- const int32_t* bias,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nhwc_qs8_qc8w(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nhwc_qs8_qc8w(
- xnn_operator_t convolution_op,
- void* workspace,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_convolution2d_nhwc_qu8(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t subsampling_height,
- uint32_t subsampling_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_channel_stride,
- size_t output_channel_stride,
- uint8_t input_zero_point,
- float input_scale,
- uint8_t kernel_zero_point,
- float kernel_scale,
- const uint8_t* kernel,
- const int32_t* bias,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* convolution_op_out);
- enum xnn_status xnn_reshape_convolution2d_nhwc_qu8(
- xnn_operator_t convolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* workspace_size,
- size_t* workspace_alignment,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_convolution2d_nhwc_qu8(
- xnn_operator_t convolution_op,
- void* workspace,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_copy_nc_x8(
- uint32_t flags,
- xnn_operator_t* copy_op_out);
- enum xnn_status xnn_reshape_copy_nc_x8(
- xnn_operator_t copy_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_copy_nc_x8(
- xnn_operator_t copy_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_copy_nc_x16(
- uint32_t flags,
- xnn_operator_t* copy_op_out);
- enum xnn_status xnn_reshape_copy_nc_x16(
- xnn_operator_t copy_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_copy_nc_x16(
- xnn_operator_t copy_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_copy_nc_x32(
- uint32_t flags,
- xnn_operator_t* copy_op_out);
- enum xnn_status xnn_reshape_copy_nc_x32(
- xnn_operator_t copy_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_copy_nc_x32(
- xnn_operator_t copy_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_copy_nc_x32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const uint32_t* input,
- uint32_t* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_deconvolution2d_nhwc_f16(
- uint32_t output_padding_top,
- uint32_t output_padding_right,
- uint32_t output_padding_bottom,
- uint32_t output_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- const void* kernel,
- const void* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* deconvolution_op_out);
- enum xnn_status xnn_reshape_deconvolution2d_nhwc_f16(
- xnn_operator_t deconvolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- uint32_t adjustment_height,
- uint32_t adjustment_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_deconvolution2d_nhwc_f16(
- xnn_operator_t deconvolution_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_deconvolution2d_nhwc_f32(
- uint32_t output_padding_top,
- uint32_t output_padding_right,
- uint32_t output_padding_bottom,
- uint32_t output_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- const float* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* deconvolution_op_out);
- enum xnn_status xnn_reshape_deconvolution2d_nhwc_f32(
- xnn_operator_t deconvolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- uint32_t adjustment_height,
- uint32_t adjustment_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_deconvolution2d_nhwc_f32(
- xnn_operator_t deconvolution_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_deconvolution2d_nhwc_qs8(
- uint32_t output_padding_top,
- uint32_t output_padding_right,
- uint32_t output_padding_bottom,
- uint32_t output_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- int8_t input_zero_point,
- float input_scale,
- float kernel_scale,
- const int8_t* kernel,
- const int32_t* bias,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* deconvolution_op_out);
- enum xnn_status xnn_reshape_deconvolution2d_nhwc_qs8(
- xnn_operator_t deconvolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- uint32_t adjustment_height,
- uint32_t adjustment_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_deconvolution2d_nhwc_qs8(
- xnn_operator_t deconvolution_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_deconvolution2d_nhwc_qu8(
- uint32_t output_padding_top,
- uint32_t output_padding_right,
- uint32_t output_padding_bottom,
- uint32_t output_padding_left,
- uint32_t kernel_height,
- uint32_t kernel_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint32_t groups,
- size_t group_input_channels,
- size_t group_output_channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- uint8_t input_zero_point,
- float input_scale,
- uint8_t kernel_zero_point,
- float kernel_scale,
- const uint8_t* kernel,
- const int32_t* bias,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* deconvolution_op_out);
- enum xnn_status xnn_reshape_deconvolution2d_nhwc_qu8(
- xnn_operator_t deconvolution_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- uint32_t adjustment_height,
- uint32_t adjustment_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_deconvolution2d_nhwc_qu8(
- xnn_operator_t deconvolution_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_depth_to_space_nchw2nhwc_x16(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* depth_to_space_op_out);
- enum xnn_status xnn_reshape_depth_to_space_nchw2nhwc_x16(
- xnn_operator_t depth_to_space_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_depth_to_space_nchw2nhwc_x16(
- xnn_operator_t depth_to_space_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_depth_to_space_nchw2nhwc_x32(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* depth_to_space_op_out);
- enum xnn_status xnn_reshape_depth_to_space_nchw2nhwc_x32(
- xnn_operator_t depth_to_space_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_depth_to_space_nchw2nhwc_x32(
- xnn_operator_t depth_to_space_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_depth_to_space_nhwc_x8(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* depth_to_space_op_out);
- enum xnn_status xnn_reshape_depth_to_space_nhwc_x8(
- xnn_operator_t depth_to_space_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_depth_to_space_nhwc_x8(
- xnn_operator_t depth_to_space_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_depth_to_space_nhwc_x16(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* depth_to_space_op_out);
- enum xnn_status xnn_reshape_depth_to_space_nhwc_x16(
- xnn_operator_t depth_to_space_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_depth_to_space_nhwc_x16(
- xnn_operator_t depth_to_space_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_depth_to_space_nhwc_x32(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* depth_to_space_op_out);
- enum xnn_status xnn_reshape_depth_to_space_nhwc_x32(
- xnn_operator_t depth_to_space_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_depth_to_space_nhwc_x32(
- xnn_operator_t depth_to_space_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_divide_nd_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* divide_op_out);
- enum xnn_status xnn_reshape_divide_nd_f16(
- xnn_operator_t divide_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_divide_nd_f16(
- xnn_operator_t divide_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_divide_nd_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* divide_op_out);
- enum xnn_status xnn_reshape_divide_nd_f32(
- xnn_operator_t divide_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_divide_nd_f32(
- xnn_operator_t divide_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_divide_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- float output_min,
- float output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_dynamic_fully_connected_nc_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* dynamic_fully_connected_op_out);
- enum xnn_status xnn_reshape_dynamic_fully_connected_nc_f16(
- xnn_operator_t dynamic_fully_connected_op,
- size_t batch_size,
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_dynamic_fully_connected_nc_f16(
- xnn_operator_t dynamic_fully_connected_op,
- void* workspace,
- const void* input,
- const void* kernel,
- const void* bias,
- void* output);
- enum xnn_status xnn_create_dynamic_fully_connected_nc_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* dynamic_fully_connected_op_out);
- enum xnn_status xnn_reshape_dynamic_fully_connected_nc_f32(
- xnn_operator_t dynamic_fully_connected_op,
- size_t batch_size,
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_dynamic_fully_connected_nc_f32(
- xnn_operator_t dynamic_fully_connected_op,
- void* workspace,
- const float* input,
- const float* kernel,
- const float* bias,
- float* output);
- enum xnn_status xnn_create_elu_nc_f16(
- float alpha,
- uint32_t flags,
- xnn_operator_t* elu_op_out);
- enum xnn_status xnn_reshape_elu_nc_f16(
- xnn_operator_t elu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_elu_nc_f16(
- xnn_operator_t elu_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_elu_nc_f32(
- float alpha,
- uint32_t flags,
- xnn_operator_t* elu_op_out);
- enum xnn_status xnn_reshape_elu_nc_f32(
- xnn_operator_t elu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_elu_nc_f32(
- xnn_operator_t elu_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_elu_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- float alpha,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_elu_nc_qs8(
- float alpha,
- int8_t input_zero_point,
- float input_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* elu_op_out);
- enum xnn_status xnn_reshape_elu_nc_qs8(
- xnn_operator_t elu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_elu_nc_qs8(
- xnn_operator_t elu_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_floor_nc_f16(
- uint32_t flags,
- xnn_operator_t* floor_op_out);
- enum xnn_status xnn_reshape_floor_nc_f16(
- xnn_operator_t floor_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_floor_nc_f16(
- xnn_operator_t floor_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_floor_nc_f32(
- uint32_t flags,
- xnn_operator_t* floor_op_out);
- enum xnn_status xnn_reshape_floor_nc_f32(
- xnn_operator_t floor_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_floor_nc_f32(
- xnn_operator_t floor_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_floor_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_fully_connected_nc_f16(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- const void* kernel,
- const void* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_f16(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_f16(
- xnn_operator_t fully_connected_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_fully_connected_nc_f32(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- const float* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_f32(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_f32(
- xnn_operator_t fully_connected_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_fully_connected_nc_f32_qc4w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- uint8_t kernel_zero_point,
- const float* kernel_scale,
- const uint8_t* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_f32_qc4w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_f32_qc4w(
- xnn_operator_t fully_connected_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_fully_connected_nc_f32_qc8w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- const float* kernel_scale,
- const int8_t* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_f32_qc8w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_f32_qc8w(
- xnn_operator_t fully_connected_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_fully_connected_nc_qd8_f16_qc4w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- uint8_t kernel_zero_point,
- const float* kernel_scale,
- const void* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_setup_fully_connected_nc_qd8_f16_qc4w(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- void* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_reshape_fully_connected_nc_qd8_f16_qc4w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_fully_connected_nc_qd8_f32_qc4w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- uint8_t kernel_zero_point,
- const float* kernel_scale,
- const void* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_setup_fully_connected_nc_qd8_f32_qc4w(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- float* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_reshape_fully_connected_nc_qd8_f32_qc4w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_fully_connected_nc_qd8_f16_qc8w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- const float* kernel_scale,
- const int8_t* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_setup_fully_connected_nc_qd8_f16_qc8w(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- void* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_reshape_fully_connected_nc_qd8_f16_qc8w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_fully_connected_nc_qd8_f32_qc8w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- const float* kernel_scale,
- const int8_t* kernel,
- const float* bias,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_setup_fully_connected_nc_qd8_f32_qc8w(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- float* output,
- const struct xnn_dynamic_quantization_params* quantization_params);
- enum xnn_status xnn_reshape_fully_connected_nc_qd8_f32_qc8w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_fully_connected_nc_qs8(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- int8_t input_zero_point,
- float input_scale,
- float kernel_scale,
- const int8_t* kernel,
- const int32_t* bias,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_qs8(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_qs8(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_fully_connected_nc_qs8_qc8w(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- int8_t input_zero_point,
- float input_scale,
- const float* kernel_scale,
- const int8_t* kernel,
- const int32_t* bias,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_qs8_qc8w(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_qs8_qc8w(
- xnn_operator_t fully_connected_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_fully_connected_nc_qu8(
- size_t input_channels,
- size_t output_channels,
- size_t input_stride,
- size_t output_stride,
- uint8_t input_zero_point,
- float input_scale,
- uint8_t kernel_zero_point,
- float kernel_scale,
- const uint8_t* kernel,
- const int32_t* bias,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* fully_connected_op_out);
- enum xnn_status xnn_reshape_fully_connected_nc_qu8(
- xnn_operator_t fully_connected_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_fully_connected_nc_qu8(
- xnn_operator_t fully_connected_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_global_average_pooling_ncw_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_ncw_f16(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_ncw_f16(
- xnn_operator_t global_average_pooling_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_global_average_pooling_ncw_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_ncw_f32(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_ncw_f32(
- xnn_operator_t global_average_pooling_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_global_average_pooling_nwc_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_nwc_f16(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_nwc_f16(
- xnn_operator_t global_average_pooling_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_global_average_pooling_nwc_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_nwc_f32(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_nwc_f32(
- xnn_operator_t global_average_pooling_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_global_average_pooling_nwc_qs8(
- int8_t input_zero_point,
- float input_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_nwc_qs8(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_nwc_qs8(
- xnn_operator_t global_average_pooling_op,
- void* workspace,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_global_average_pooling_nwc_qu8(
- uint8_t input_zero_point,
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* global_average_pooling_op_out);
- enum xnn_status xnn_reshape_global_average_pooling_nwc_qu8(
- xnn_operator_t global_average_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_average_pooling_nwc_qu8(
- xnn_operator_t global_average_pooling_op,
- void* workspace,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_global_sum_pooling_nwc_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_sum_pooling_op_out);
- enum xnn_status xnn_reshape_global_sum_pooling_nwc_f16(
- xnn_operator_t global_sum_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_sum_pooling_nwc_f16(
- xnn_operator_t global_sum_pooling_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_global_sum_pooling_nwc_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* global_sum_pooling_op_out);
- enum xnn_status xnn_reshape_global_sum_pooling_nwc_f32(
- xnn_operator_t global_sum_pooling_op,
- size_t batch_size,
- size_t width,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_global_sum_pooling_nwc_f32(
- xnn_operator_t global_sum_pooling_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_hardswish_nc_f16(
- uint32_t flags,
- xnn_operator_t* hardswish_op_out);
- enum xnn_status xnn_reshape_hardswish_nc_f16(
- xnn_operator_t hardswish_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_hardswish_nc_f16(
- xnn_operator_t hardswish_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_hardswish_nc_f32(
- uint32_t flags,
- xnn_operator_t* hardswish_op_out);
- enum xnn_status xnn_reshape_hardswish_nc_f32(
- xnn_operator_t hardswish_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_hardswish_nc_f32(
- xnn_operator_t hardswish_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_hardswish_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_leaky_relu_nc_f16(
- float negative_slope,
- uint32_t flags,
- xnn_operator_t* leaky_relu_op_out);
- enum xnn_status xnn_reshape_leaky_relu_nc_f16(
- xnn_operator_t leaky_relu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_leaky_relu_nc_f16(
- xnn_operator_t leaky_relu_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_leaky_relu_nc_f32(
- float negative_slope,
- uint32_t flags,
- xnn_operator_t* leaky_relu_op_out);
- enum xnn_status xnn_reshape_leaky_relu_nc_f32(
- xnn_operator_t leaky_relu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_leaky_relu_nc_f32(
- xnn_operator_t leaky_relu_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_leaky_relu_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- float negative_slope,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_leaky_relu_nc_qs8(
- float negative_slope,
- int8_t input_zero_point,
- float input_scale,
- int8_t output_zero_point,
- float output_scale,
- uint32_t flags,
- xnn_operator_t* leaky_relu_op_out);
- enum xnn_status xnn_reshape_leaky_relu_nc_qs8(
- xnn_operator_t leaky_relu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_leaky_relu_nc_qs8(
- xnn_operator_t leaky_relu_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_leaky_relu_nc_qu8(
- float negative_slope,
- uint8_t input_zero_point,
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint32_t flags,
- xnn_operator_t* leaky_relu_op_out);
- enum xnn_status xnn_reshape_leaky_relu_nc_qu8(
- xnn_operator_t leaky_relu_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_leaky_relu_nc_qu8(
- xnn_operator_t leaky_relu_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_max_pooling2d_nhwc_f16(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* max_pooling_op_out);
- enum xnn_status xnn_reshape_max_pooling2d_nhwc_f16(
- xnn_operator_t max_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_max_pooling2d_nhwc_f16(
- xnn_operator_t max_pooling_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_max_pooling2d_nhwc_f32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* max_pooling_op_out);
- enum xnn_status xnn_reshape_max_pooling2d_nhwc_f32(
- xnn_operator_t max_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_max_pooling2d_nhwc_f32(
- xnn_operator_t max_pooling_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_max_pooling2d_nhwc_s8(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* max_pooling_op_out);
- enum xnn_status xnn_reshape_max_pooling2d_nhwc_s8(
- xnn_operator_t max_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_max_pooling2d_nhwc_s8(
- xnn_operator_t max_pooling_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_max_pooling2d_nhwc_u8(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- uint32_t stride_height,
- uint32_t stride_width,
- uint32_t dilation_height,
- uint32_t dilation_width,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* max_pooling_op_out);
- enum xnn_status xnn_reshape_max_pooling2d_nhwc_u8(
- xnn_operator_t max_pooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_max_pooling2d_nhwc_u8(
- xnn_operator_t max_pooling_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_maximum_nd_f16(
- uint32_t flags,
- xnn_operator_t* maximum_op_out);
- enum xnn_status xnn_reshape_maximum_nd_f16(
- xnn_operator_t maximum_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_maximum_nd_f16(
- xnn_operator_t maximum_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_maximum_nd_f32(
- uint32_t flags,
- xnn_operator_t* maximum_op_out);
- enum xnn_status xnn_reshape_maximum_nd_f32(
- xnn_operator_t maximum_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_maximum_nd_f32(
- xnn_operator_t maximum_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_maximum_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_mean_nd_f16(
- uint32_t flags,
- xnn_operator_t* mean_op_out);
- enum xnn_status xnn_reshape_mean_nd_f16(
- xnn_operator_t mean_op,
- size_t num_reduction_axes,
- const size_t* reduction_axes,
- size_t num_input_dims,
- const size_t* input_shape,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_mean_nd_f16(
- xnn_operator_t mean_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_mean_nd_f32(
- uint32_t flags,
- xnn_operator_t* mean_op_out);
- enum xnn_status xnn_reshape_mean_nd_f32(
- xnn_operator_t mean_op,
- size_t num_reduction_axes,
- const size_t* reduction_axes,
- size_t num_input_dims,
- const size_t* input_shape,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_mean_nd_f32(
- xnn_operator_t mean_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_minimum_nd_f16(
- uint32_t flags,
- xnn_operator_t* minimum_op_out);
- enum xnn_status xnn_reshape_minimum_nd_f16(
- xnn_operator_t minimum_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_minimum_nd_f16(
- xnn_operator_t minimum_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_minimum_nd_f32(
- uint32_t flags,
- xnn_operator_t* minimum_op_out);
- enum xnn_status xnn_reshape_minimum_nd_f32(
- xnn_operator_t minimum_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_minimum_nd_f32(
- xnn_operator_t minimum_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_minimum_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_multiply_nd_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* multiply_op_out);
- enum xnn_status xnn_reshape_multiply_nd_f16(
- xnn_operator_t multiply_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_multiply_nd_f16(
- xnn_operator_t multiply_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_multiply_nd_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* multiply_op_out);
- enum xnn_status xnn_reshape_multiply_nd_f32(
- xnn_operator_t multiply_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_multiply_nd_f32(
- xnn_operator_t multiply_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_multiply_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- float output_min,
- float output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_multiply_nd_qs8(
- int8_t input1_zero_point,
- float input1_scale,
- int8_t input2_zero_point,
- float input2_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* multiply_op_out);
- enum xnn_status xnn_reshape_multiply_nd_qs8(
- xnn_operator_t multiply_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_multiply_nd_qs8(
- xnn_operator_t multiply_op,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output);
- enum xnn_status xnn_run_multiply_nd_qs8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- int8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- int8_t input2_zero_point,
- float input2_scale,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_multiply_nd_qu8(
- uint8_t input1_zero_point,
- float input1_scale,
- uint8_t input2_zero_point,
- float input2_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* multiply_op_out);
- enum xnn_status xnn_reshape_multiply_nd_qu8(
- xnn_operator_t multiply_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_multiply_nd_qu8(
- xnn_operator_t multiply_op,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output);
- enum xnn_status xnn_run_multiply_nd_qu8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- uint8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- uint8_t input2_zero_point,
- float input2_scale,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_negate_nc_f16(
- uint32_t flags,
- xnn_operator_t* negate_op_out);
- enum xnn_status xnn_reshape_negate_nc_f16(
- xnn_operator_t negate_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_negate_nc_f16(
- xnn_operator_t negate_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_negate_nc_f32(
- uint32_t flags,
- xnn_operator_t* negate_op_out);
- enum xnn_status xnn_reshape_negate_nc_f32(
- xnn_operator_t negate_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_negate_nc_f32(
- xnn_operator_t negate_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_negate_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_prelu_nc_f16(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- const void* negative_slope,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* prelu_op_out);
- enum xnn_status xnn_reshape_prelu_nc_f16(
- xnn_operator_t prelu_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_prelu_nc_f16(
- xnn_operator_t prelu_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_prelu_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- const float* negative_slope,
- uint32_t flags,
- xnn_code_cache_t code_cache,
- xnn_weights_cache_t weights_cache,
- xnn_operator_t* prelu_op_out);
- enum xnn_status xnn_reshape_prelu_nc_f32(
- xnn_operator_t prelu_op,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_prelu_nc_f32(
- xnn_operator_t prelu_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_resize_bilinear2d_nchw_f32(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nchw_f32(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nchw_f32(
- xnn_operator_t resize_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_resize_bilinear2d_nchw_f16(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nchw_f16(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nchw_f16(
- xnn_operator_t resize_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_resize_bilinear2d_nhwc_f16(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nhwc_f16(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f16(
- xnn_operator_t resize_op,
- void* workspace,
- const void* input,
- void* output);
- enum xnn_status xnn_create_resize_bilinear2d_nhwc_f32(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nhwc_f32(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f32(
- xnn_operator_t resize_op,
- void* workspace,
- const float* input,
- float* output);
- enum xnn_status xnn_create_resize_bilinear2d_nhwc_s8(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nhwc_s8(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nhwc_s8(
- xnn_operator_t resize_op,
- void* workspace,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_resize_bilinear2d_nhwc_u8(
- size_t output_height,
- size_t output_width,
- uint32_t flags,
- xnn_operator_t* resize_op_out);
- enum xnn_status xnn_reshape_resize_bilinear2d_nhwc_u8(
- xnn_operator_t resize_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_resize_bilinear2d_nhwc_u8(
- xnn_operator_t resize_op,
- void* workspace,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_rope_nthc_f16(
- size_t max_tokens,
- uint32_t flags,
- xnn_operator_t* rope_op_out);
- enum xnn_status xnn_reshape_rope_nthc_f16(
- xnn_operator_t rope_op,
- size_t batch_size,
- size_t tokens,
- size_t heads,
- size_t channels,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_rope_nthc_f16(
- xnn_operator_t rope_op,
- const void* input,
- const void* weights,
- void* output);
- enum xnn_status xnn_create_rope_nthc_f32(
- size_t max_tokens,
- uint32_t flags,
- xnn_operator_t* rope_op_out);
- enum xnn_status xnn_reshape_rope_nthc_f32(
- xnn_operator_t rope_op,
- size_t batch_size,
- size_t tokens,
- size_t heads,
- size_t channels,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_rope_nthc_f32(
- xnn_operator_t rope_op,
- const float* input,
- const float* weights,
- float* output);
- // N: batch size
- // H: number of heads
- // T: tokens (sequence length)
- // C: channels (head dimension)
- enum xnn_status xnn_create_scaled_dot_product_attention_nhtc_f16(
- enum xnn_attention_logits_cap_type cap_type,
- const void* cap_params,
- uint32_t flags,
- xnn_operator_t* attention_op_out);
- enum xnn_status xnn_reshape_scaled_dot_product_attention_nhtc_f16(
- xnn_operator_t attention_op,
- size_t batch_size,
- size_t query_heads,
- // Number of tokens in query.
- size_t query_tokens,
- size_t key_value_heads,
- // Number of tokens in key/value. For self-attention, this is same as tokens.
- size_t key_value_tokens,
- size_t query_key_channels,
- size_t value_channels,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- // Query is of dimension [batch_size, query_heads, query_tokens, channels].
- // Key and value are of dimension [batch_size, key_value_heads, key_value_tokens, channels].
- // Scale is of dimension [channels].
- // Mask is of dimension [query_tokens, key_value_tokens].
- enum xnn_status xnn_setup_scaled_dot_product_attention_nhtc_f16(
- xnn_operator_t attention_op,
- void* workspace,
- const void* query,
- const void* key,
- const void* value,
- const void* scale,
- const void* mask,
- void* output);
- // N: batch size
- // H: number of heads
- // T: tokens (sequence length)
- // C: channels (head dimension)
- enum xnn_status xnn_create_scaled_dot_product_attention_nhtc_f32(
- enum xnn_attention_logits_cap_type cap_type,
- const void* cap_params,
- uint32_t flags,
- xnn_operator_t* attention_op_out);
- enum xnn_status xnn_reshape_scaled_dot_product_attention_nhtc_f32(
- xnn_operator_t attention_op,
- size_t batch_size,
- size_t query_heads,
- // Number of tokens in query.
- size_t query_tokens,
- size_t key_value_heads,
- // Number of tokens in key/value. For self-attention, this is same as tokens.
- size_t key_value_tokens,
- size_t query_key_channels,
- size_t value_channels,
- size_t* workspace_size,
- size_t* workspace_alignment,
- pthreadpool_t threadpool);
- // Query is of dimension [batch_size, query_heads, query_tokens, query_key_channels].
- // Key and value are of dimension [batch_size, key_value_heads, key_value_tokens, query_key_channels].
- // Scale is of dimension [query_key_channels].
- // Mask is of dimension [query_tokens, key_value_tokens].
- // Output is of dimension [batch_size, query_heads, query_tokens, value_channels].
- enum xnn_status xnn_setup_scaled_dot_product_attention_nhtc_f32(
- xnn_operator_t attention_op,
- void* workspace,
- const float* query,
- const float* key,
- const float* value,
- const float* scale,
- const float* mask,
- float* output);
- enum xnn_status xnn_create_sigmoid_nc_f16(
- uint32_t flags,
- xnn_operator_t* sigmoid_op_out);
- enum xnn_status xnn_reshape_sigmoid_nc_f16(
- xnn_operator_t sigmoid_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_sigmoid_nc_f16(
- xnn_operator_t sigmoid_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_sigmoid_nc_f32(
- uint32_t flags,
- xnn_operator_t* sigmoid_op_out);
- enum xnn_status xnn_reshape_sigmoid_nc_f32(
- xnn_operator_t sigmoid_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_sigmoid_nc_f32(
- xnn_operator_t sigmoid_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_sigmoid_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_sigmoid_nc_qs8(
- int8_t input_zero_point,
- float input_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* sigmoid_op_out);
- enum xnn_status xnn_reshape_sigmoid_nc_qs8(
- xnn_operator_t sigmoid_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_sigmoid_nc_qs8(
- xnn_operator_t sigmoid_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_sigmoid_nc_qu8(
- uint8_t input_zero_point,
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* sigmoid_op_out);
- enum xnn_status xnn_reshape_sigmoid_nc_qu8(
- xnn_operator_t sigmoid_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_sigmoid_nc_qu8(
- xnn_operator_t sigmoid_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_slice_nd_x16(
- uint32_t flags,
- xnn_operator_t* slice_op_out);
- enum xnn_status xnn_reshape_slice_nd_x16(
- xnn_operator_t slice_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* offsets,
- const size_t* sizes,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_slice_nd_x16(
- xnn_operator_t slice_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_slice_nd_x32(
- uint32_t flags,
- xnn_operator_t* slice_op_out);
- enum xnn_status xnn_reshape_slice_nd_x32(
- xnn_operator_t slice_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* offsets,
- const size_t* sizes,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_slice_nd_x32(
- xnn_operator_t slice_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_slice_nd_x32(
- size_t num_dims,
- const size_t* input_shape,
- const size_t* offsets,
- const size_t* sizes,
- const void* input,
- void* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_softmax_nc_f16(
- uint32_t flags,
- xnn_operator_t* softmax_op_out);
- enum xnn_status xnn_reshape_softmax_nc_f16(
- xnn_operator_t softmax_op,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_softmax_nc_f16(
- xnn_operator_t softmax_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_softmax_nc_f32(
- uint32_t flags,
- xnn_operator_t* softmax_op_out);
- enum xnn_status xnn_reshape_softmax_nc_f32(
- xnn_operator_t softmax_op,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_softmax_nc_f32(
- xnn_operator_t softmax_op,
- const float* input,
- float* output);
- enum xnn_status xnn_create_softmax_nc_qu8(
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint32_t flags,
- xnn_operator_t* softmax_op_out);
- enum xnn_status xnn_reshape_softmax_nc_qu8(
- xnn_operator_t softmax_op,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_softmax_nc_qu8(
- xnn_operator_t softmax_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_space_to_depth_nhwc_x16(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* space_to_depth_op_out);
- enum xnn_status xnn_reshape_space_to_depth_nhwc_x16(
- xnn_operator_t space_to_depth_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_space_to_depth_nhwc_x16(
- xnn_operator_t space_to_depth_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_space_to_depth_nhwc_x32(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* space_to_depth_op_out);
- enum xnn_status xnn_reshape_space_to_depth_nhwc_x32(
- xnn_operator_t space_to_depth_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_space_to_depth_nhwc_x32(
- xnn_operator_t space_to_depth_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_square_nc_f16(
- uint32_t flags,
- xnn_operator_t* square_op_out);
- enum xnn_status xnn_reshape_square_nc_f16(
- xnn_operator_t square_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_square_nc_f16(
- xnn_operator_t square_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_square_nc_f32(
- uint32_t flags,
- xnn_operator_t* square_op_out);
- enum xnn_status xnn_reshape_square_nc_f32(
- xnn_operator_t square_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_square_nc_f32(
- xnn_operator_t square_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_square_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_square_root_nc_f16(
- uint32_t flags,
- xnn_operator_t* sqrt_op_out);
- enum xnn_status xnn_reshape_square_root_nc_f16(
- xnn_operator_t sqrt_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_square_root_nc_f16(
- xnn_operator_t sqrt_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_square_root_nc_f32(
- uint32_t flags,
- xnn_operator_t* sqrt_op_out);
- enum xnn_status xnn_reshape_square_root_nc_f32(
- xnn_operator_t sqrt_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_square_root_nc_f32(
- xnn_operator_t sqrt_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_square_root_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_reciprocal_square_root_nc_f32(
- uint32_t flags, xnn_operator_t* sqrt_op_out);
- enum xnn_status xnn_reshape_reciprocal_square_root_nc_f32(
- xnn_operator_t sqrt_op, size_t batch_size, size_t channels,
- size_t input_stride, size_t output_stride, pthreadpool_t threadpool);
- enum xnn_status xnn_setup_reciprocal_square_root_nc_f32(xnn_operator_t sqrt_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_reciprocal_square_root_nc_f32(
- size_t channels, size_t input_stride, size_t output_stride,
- size_t batch_size, const float* input, float* output, uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_squared_difference_nd_f16(
- uint32_t flags,
- xnn_operator_t* squared_difference_op_out);
- enum xnn_status xnn_reshape_squared_difference_nd_f16(
- xnn_operator_t squared_difference_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_squared_difference_nd_f16(
- xnn_operator_t squared_difference_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_squared_difference_nd_f32(
- uint32_t flags,
- xnn_operator_t* squared_difference_op_out);
- enum xnn_status xnn_reshape_squared_difference_nd_f32(
- xnn_operator_t squared_difference_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_squared_difference_nd_f32(
- xnn_operator_t squared_difference_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_squared_difference_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_subtract_nd_f16(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* subtract_op_out);
- enum xnn_status xnn_reshape_subtract_nd_f16(
- xnn_operator_t subtract_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_subtract_nd_f16(
- xnn_operator_t subtract_op,
- const void* input1,
- const void* input2,
- void* output);
- enum xnn_status xnn_create_subtract_nd_f32(
- float output_min,
- float output_max,
- uint32_t flags,
- xnn_operator_t* subtract_op_out);
- enum xnn_status xnn_reshape_subtract_nd_f32(
- xnn_operator_t subtract_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_subtract_nd_f32(
- xnn_operator_t subtract_op,
- const float* input1,
- const float* input2,
- float* output);
- enum xnn_status xnn_run_subtract_nd_f32(
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- const float* input1,
- const float* input2,
- float* output,
- float output_min,
- float output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_subtract_nd_qs8(
- int8_t input1_zero_point,
- float input1_scale,
- int8_t input2_zero_point,
- float input2_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* subtract_op_out);
- enum xnn_status xnn_reshape_subtract_nd_qs8(
- xnn_operator_t subtract_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_subtract_nd_qs8(
- xnn_operator_t subtract_op,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output);
- enum xnn_status xnn_run_subtract_nd_qs8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- int8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- int8_t input2_zero_point,
- float input2_scale,
- const int8_t* input1,
- const int8_t* input2,
- int8_t* output,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_subtract_nd_qu8(
- uint8_t input1_zero_point,
- float input1_scale,
- uint8_t input2_zero_point,
- float input2_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* subtract_op_out);
- enum xnn_status xnn_reshape_subtract_nd_qu8(
- xnn_operator_t subtract_op,
- size_t num_input1_dims,
- const size_t* input1_shape,
- size_t num_input2_dims,
- const size_t* input2_shape,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_subtract_nd_qu8(
- xnn_operator_t subtract_op,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output);
- enum xnn_status xnn_run_subtract_nd_qu8(
- size_t num_input1_dims,
- const size_t* input1_shape,
- uint8_t input1_zero_point,
- float input1_scale,
- size_t num_input2_dims,
- const size_t* input2_shape,
- uint8_t input2_zero_point,
- float input2_scale,
- const uint8_t* input1,
- const uint8_t* input2,
- uint8_t* output,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_tanh_nc_f16(
- uint32_t flags,
- xnn_operator_t* tanh_op_out);
- enum xnn_status xnn_reshape_tanh_nc_f16(
- xnn_operator_t tanh_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_tanh_nc_f16(
- xnn_operator_t tanh_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_tanh_nc_f32(
- uint32_t flags,
- xnn_operator_t* tanh_op_out);
- enum xnn_status xnn_reshape_tanh_nc_f32(
- xnn_operator_t tanh_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_tanh_nc_f32(
- xnn_operator_t tanh_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_tanh_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_tanh_nc_qs8(
- int8_t input_zero_point,
- float input_scale,
- int8_t output_zero_point,
- float output_scale,
- int8_t output_min,
- int8_t output_max,
- uint32_t flags,
- xnn_operator_t* tanh_op_out);
- enum xnn_status xnn_reshape_tanh_nc_qs8(
- xnn_operator_t tanh_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_tanh_nc_qs8(
- xnn_operator_t tanh_op,
- const int8_t* input,
- int8_t* output);
- enum xnn_status xnn_create_tanh_nc_qu8(
- uint8_t input_zero_point,
- float input_scale,
- uint8_t output_zero_point,
- float output_scale,
- uint8_t output_min,
- uint8_t output_max,
- uint32_t flags,
- xnn_operator_t* tanh_op_out);
- enum xnn_status xnn_reshape_tanh_nc_qu8(
- xnn_operator_t tanh_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_tanh_nc_qu8(
- xnn_operator_t tanh_op,
- const uint8_t* input,
- uint8_t* output);
- enum xnn_status xnn_create_transpose_nd_x8(
- uint32_t flags,
- xnn_operator_t* transpose_op_out);
- enum xnn_status xnn_reshape_transpose_nd_x8(
- xnn_operator_t transpose_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_transpose_nd_x8(
- xnn_operator_t transpose_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_transpose_nd_x8(
- const void* input,
- void* output,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_transpose_nd_x16(
- uint32_t flags,
- xnn_operator_t* transpose_op_out);
- enum xnn_status xnn_reshape_transpose_nd_x16(
- xnn_operator_t transpose_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_transpose_nd_x16(
- xnn_operator_t transpose_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_transpose_nd_x16(
- const void* input,
- void* output,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_transpose_nd_x32(
- uint32_t flags,
- xnn_operator_t* transpose_op_out);
- enum xnn_status xnn_reshape_transpose_nd_x32(
- xnn_operator_t transpose_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_transpose_nd_x32(
- xnn_operator_t transpose_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_transpose_nd_x32(
- const void* input,
- void* output,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_transpose_nd_x64(
- uint32_t flags,
- xnn_operator_t* transpose_op_out);
- enum xnn_status xnn_reshape_transpose_nd_x64(
- xnn_operator_t transpose_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_transpose_nd_x64(
- xnn_operator_t transpose_op,
- const void* input,
- void* output);
- enum xnn_status xnn_run_transpose_nd_x64(
- const void* input,
- void* output,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* output_perm,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_truncation_nc_f16(
- uint32_t flags,
- xnn_operator_t* truncation_op_out);
- enum xnn_status xnn_reshape_truncation_nc_f16(
- xnn_operator_t truncation_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_truncation_nc_f16(
- xnn_operator_t truncation_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_truncation_nc_f32(
- uint32_t flags,
- xnn_operator_t* truncation_op_out);
- enum xnn_status xnn_reshape_truncation_nc_f32(
- xnn_operator_t truncation_op,
- size_t batch_size,
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_truncation_nc_f32(
- xnn_operator_t truncation_op,
- const float* input,
- float* output);
- enum xnn_status xnn_run_truncation_nc_f32(
- size_t channels,
- size_t input_stride,
- size_t output_stride,
- size_t batch_size,
- const float* input,
- float* output,
- uint32_t flags,
- pthreadpool_t threadpool);
- enum xnn_status xnn_create_unpooling2d_nhwc_x32(
- uint32_t input_padding_top,
- uint32_t input_padding_right,
- uint32_t input_padding_bottom,
- uint32_t input_padding_left,
- uint32_t pooling_height,
- uint32_t pooling_width,
- size_t channels,
- size_t input_pixel_stride,
- size_t output_pixel_stride,
- uint32_t flags,
- xnn_operator_t* unpooling_op_out);
- enum xnn_status xnn_reshape_unpooling2d_nhwc_x32(
- xnn_operator_t unpooling_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t* output_height_out,
- size_t* output_width_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_unpooling2d_nhwc_x32(
- xnn_operator_t unpooling_op,
- const void* input,
- const uint32_t* index,
- void* output);
- enum xnn_status xnn_create_slice_nd_x8(
- uint32_t flags,
- xnn_operator_t* slice_op_out);
- enum xnn_status xnn_reshape_slice_nd_x8(
- xnn_operator_t slice_op,
- size_t num_dims,
- const size_t* input_shape,
- const size_t* offsets,
- const size_t* sizes,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_slice_nd_x8(
- xnn_operator_t slice_op,
- const void* input,
- void* output);
- enum xnn_status xnn_create_space_to_depth_nhwc_x8(
- uint32_t block_size,
- uint32_t flags,
- xnn_operator_t* space_to_depth_op_out);
- enum xnn_status xnn_reshape_space_to_depth_nhwc_x8(
- xnn_operator_t space_to_depth_op,
- size_t batch_size,
- size_t input_height,
- size_t input_width,
- size_t input_channels,
- size_t* output_height_out,
- size_t* output_width_out,
- size_t* output_channels_out,
- pthreadpool_t threadpool);
- enum xnn_status xnn_setup_space_to_depth_nhwc_x8(
- xnn_operator_t space_to_depth_op,
- const void* input,
- void* output);
- #ifdef __cplusplus
- } // extern "C"
- #endif
|