| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import torch
- from typing import Iterable, Optional
- def parameters_to_vector(parameters: Iterable[torch.Tensor]) -> torch.Tensor:
- r"""Flatten an iterable of parameters into a single vector.
- Args:
- parameters (Iterable[Tensor]): an iterable of Tensors that are the
- parameters of a model.
- Returns:
- The parameters represented by a single vector
- """
- # Flag for the device where the parameter is located
- param_device = None
- vec = []
- for param in parameters:
- # Ensure the parameters are located in the same device
- param_device = _check_param_device(param, param_device)
- vec.append(param.view(-1))
- return torch.cat(vec)
- def vector_to_parameters(vec: torch.Tensor, parameters: Iterable[torch.Tensor]) -> None:
- r"""Copy slices of a vector into an iterable of parameters.
- Args:
- vec (Tensor): a single vector representing the parameters of a model.
- parameters (Iterable[Tensor]): an iterable of Tensors that are the
- parameters of a model.
- """
- # Ensure vec of type Tensor
- if not isinstance(vec, torch.Tensor):
- raise TypeError(f'expected torch.Tensor, but got: {torch.typename(vec)}')
- # Flag for the device where the parameter is located
- param_device = None
- # Pointer for slicing the vector for each parameter
- pointer = 0
- for param in parameters:
- # Ensure the parameters are located in the same device
- param_device = _check_param_device(param, param_device)
- # The length of the parameter
- num_param = param.numel()
- # Slice the vector, reshape it, and replace the old data of the parameter
- param.data = vec[pointer:pointer + num_param].view_as(param).data
- # Increment the pointer
- pointer += num_param
- def _check_param_device(param: torch.Tensor, old_param_device: Optional[int]) -> int:
- r"""Check if the parameters are located on the same device.
- Currently, the conversion between model parameters and single vector form is not supported
- for multiple allocations, e.g. parameters in different GPUs/PrivateUse1s, or mixture of CPU/GPU/PrivateUse1.
- Args:
- param ([Tensor]): a Tensor of a parameter of a model
- old_param_device (int): the device where the first parameter of a
- model is allocated.
- Returns:
- old_param_device (int): report device for the first time
- """
- # Meet the first parameter
- support_device_types = ["cuda", torch._C._get_privateuse1_backend_name()]
- if old_param_device is None:
- old_param_device = param.get_device() if param.device.type in support_device_types else -1
- else:
- warn = False
- if param.device.type in support_device_types: # Check if in same GPU/PrivateUse1
- warn = (param.get_device() != old_param_device)
- else: # Check if in CPU
- warn = (old_param_device != -1)
- if warn:
- raise TypeError('Found two parameters on different devices, '
- 'this is currently not supported.')
- return old_param_device
|