| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- from __future__ import annotations
- import copy
- from typing import Optional, Tuple, TypeVar
- import torch
- __all__ = ['fuse_conv_bn_eval', 'fuse_conv_bn_weights', 'fuse_linear_bn_eval', 'fuse_linear_bn_weights']
- ConvT = TypeVar("ConvT", bound="torch.nn.modules.conv._ConvNd")
- LinearT = TypeVar("LinearT", bound="torch.nn.Linear")
- def fuse_conv_bn_eval(conv: ConvT, bn: torch.nn.modules.batchnorm._BatchNorm, transpose: bool = False) -> ConvT:
- r"""Fuse a convolutional module and a BatchNorm module into a single, new convolutional module.
- Args:
- conv (torch.nn.modules.conv._ConvNd): A convolutional module.
- bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
- transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False.
- Returns:
- torch.nn.modules.conv._ConvNd: The fused convolutional module.
- .. note::
- Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
- """
- assert not (conv.training or bn.training), "Fusion only for eval!"
- fused_conv = copy.deepcopy(conv)
- assert bn.running_mean is not None and bn.running_var is not None
- fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights(
- fused_conv.weight, fused_conv.bias,
- bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias, transpose)
- return fused_conv
- def fuse_conv_bn_weights(
- conv_w: torch.Tensor,
- conv_b: Optional[torch.Tensor],
- bn_rm: torch.Tensor,
- bn_rv: torch.Tensor,
- bn_eps: float,
- bn_w: Optional[torch.Tensor],
- bn_b: Optional[torch.Tensor],
- transpose: bool = False
- ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]:
- r"""Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters.
- Args:
- conv_w (torch.Tensor): Convolutional weight.
- conv_b (Optional[torch.Tensor]): Convolutional bias.
- bn_rm (torch.Tensor): BatchNorm running mean.
- bn_rv (torch.Tensor): BatchNorm running variance.
- bn_eps (float): BatchNorm epsilon.
- bn_w (Optional[torch.Tensor]): BatchNorm weight.
- bn_b (Optional[torch.Tensor]): BatchNorm bias.
- transpose (bool, optional): If True, transpose the conv weight. Defaults to False.
- Returns:
- Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias.
- """
- conv_weight_dtype = conv_w.dtype
- conv_bias_dtype = conv_b.dtype if conv_b is not None else conv_weight_dtype
- if conv_b is None:
- conv_b = torch.zeros_like(bn_rm)
- if bn_w is None:
- bn_w = torch.ones_like(bn_rm)
- if bn_b is None:
- bn_b = torch.zeros_like(bn_rm)
- bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)
- if transpose:
- shape = [1, -1] + [1] * (len(conv_w.shape) - 2)
- else:
- shape = [-1, 1] + [1] * (len(conv_w.shape) - 2)
- fused_conv_w = (conv_w * (bn_w * bn_var_rsqrt).reshape(shape)).to(dtype=conv_weight_dtype)
- fused_conv_b = ((conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b).to(dtype=conv_bias_dtype)
- return (
- torch.nn.Parameter(fused_conv_w, conv_w.requires_grad), torch.nn.Parameter(fused_conv_b, conv_b.requires_grad)
- )
- def fuse_linear_bn_eval(linear: LinearT, bn: torch.nn.modules.batchnorm._BatchNorm) -> LinearT:
- r"""Fuse a linear module and a BatchNorm module into a single, new linear module.
- Args:
- linear (torch.nn.Linear): A Linear module.
- bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
- Returns:
- torch.nn.Linear: The fused linear module.
- .. note::
- Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
- """
- assert not (linear.training or bn.training), "Fusion only for eval!"
- fused_linear = copy.deepcopy(linear)
- """
- Linear-BN needs to be fused while preserving the shapes of linear weight/bias.
- To preserve the shapes of linear weight/bias, the channel dim of bn needs to be broadcastable with the last dim of linear,
- because bn operates over the channel dim, (N, C_in, H, W) while linear operates over the last dim, (*, H_in).
- To be broadcastable, the number of features in bn and
- the number of output features from linear must satisfy the following condition:
- 1. they are equal, or
- 2. the number of features in bn is 1
- Otherwise, skip the folding path
- """
- assert (
- linear.out_features == bn.num_features or bn.num_features == 1
- ), "To fuse, linear.out_features == bn.num_features or bn.num_features == 1"
- assert bn.running_mean is not None and bn.running_var is not None
- fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights(
- fused_linear.weight, fused_linear.bias,
- bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias)
- return fused_linear
- def fuse_linear_bn_weights(
- linear_w: torch.Tensor,
- linear_b: Optional[torch.Tensor],
- bn_rm: torch.Tensor,
- bn_rv: torch.Tensor,
- bn_eps: float,
- bn_w: torch.Tensor,
- bn_b: torch.Tensor,
- ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]:
- r"""Fuse linear module parameters and BatchNorm module parameters into new linear module parameters.
- Args:
- linear_w (torch.Tensor): Linear weight.
- linear_b (Optional[torch.Tensor]): Linear bias.
- bn_rm (torch.Tensor): BatchNorm running mean.
- bn_rv (torch.Tensor): BatchNorm running variance.
- bn_eps (float): BatchNorm epsilon.
- bn_w (torch.Tensor): BatchNorm weight.
- bn_b (torch.Tensor): BatchNorm bias.
- transpose (bool, optional): If True, transpose the conv weight. Defaults to False.
- Returns:
- Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias.
- """
- if linear_b is None:
- linear_b = torch.zeros_like(bn_rm)
- bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps)
- fused_w = linear_w * bn_scale.unsqueeze(-1)
- fused_b = (linear_b - bn_rm) * bn_scale + bn_b
- return torch.nn.Parameter(fused_w, linear_w.requires_grad), torch.nn.Parameter(fused_b, linear_b.requires_grad)
|