| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- # mypy: allow-untyped-defs
- from typing import List, Optional, Tuple
- import torch
- from torch import Tensor
- from .optimizer import (
- _capturable_doc,
- _default_to_fused_or_foreach,
- _differentiable_doc,
- _disable_dynamo_if_unsupported,
- _foreach_doc,
- _get_capturable_supported_devices,
- _get_scalar_dtype,
- _maximize_doc,
- _use_grad_for_differentiable,
- _view_as_real,
- Optimizer,
- ParamsT,
- )
- __all__ = ["Rprop", "rprop"]
- class Rprop(Optimizer):
- def __init__(
- self,
- params: ParamsT,
- lr: float = 1e-2,
- etas: Tuple[float, float] = (0.5, 1.2),
- step_sizes: Tuple[float, float] = (1e-6, 50),
- *,
- capturable: bool = False,
- foreach: Optional[bool] = None,
- maximize: bool = False,
- differentiable: bool = False,
- ):
- if not 0.0 <= lr:
- raise ValueError(f"Invalid learning rate: {lr}")
- if not 0.0 < etas[0] < 1.0 < etas[1]:
- raise ValueError(f"Invalid eta values: {etas[0]}, {etas[1]}")
- defaults = dict(
- lr=lr,
- etas=etas,
- step_sizes=step_sizes,
- foreach=foreach,
- maximize=maximize,
- differentiable=differentiable,
- capturable=capturable,
- )
- super().__init__(params, defaults)
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault("foreach", None)
- group.setdefault("maximize", False)
- group.setdefault("differentiable", False)
- group.setdefault("capturable", False)
- for p in group["params"]:
- p_state = self.state.get(p, [])
- if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
- step_val = float(p_state["step"])
- p_state["step"] = (
- torch.tensor(
- step_val, dtype=_get_scalar_dtype(), device=p.device
- )
- if group["capturable"]
- else torch.tensor(step_val, dtype=_get_scalar_dtype())
- )
- def _init_group(self, group, params, grads, prevs, step_sizes, state_steps):
- has_complex = False
- for p in group["params"]:
- if p.grad is None:
- continue
- has_complex |= torch.is_complex(p)
- params.append(p)
- grad = p.grad
- if grad.is_sparse:
- raise RuntimeError("Rprop does not support sparse gradients")
- grads.append(grad)
- state = self.state[p]
- # State initialization
- if len(state) == 0:
- state["step"] = (
- torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
- if group["capturable"]
- else torch.zeros((), dtype=_get_scalar_dtype())
- )
- state["prev"] = torch.zeros_like(p, memory_format=torch.preserve_format)
- if p.dtype.is_complex:
- # Complex Number should be as if they are two independent real numbers.
- # Hence the step_size shouldn't be zero for imaginary part.
- state["step_size"] = torch.full_like(
- grad, complex(group["lr"], group["lr"])
- )
- else:
- state["step_size"] = torch.full_like(grad, group["lr"])
- prevs.append(state["prev"])
- step_sizes.append(state["step_size"])
- state_steps.append(state["step"])
- return has_complex
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- self._cuda_graph_capture_health_check()
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params: List[Tensor] = []
- grads: List[Tensor] = []
- prevs: List[Tensor] = []
- step_sizes: List[Tensor] = []
- state_steps: List[Tensor] = []
- etaminus, etaplus = group["etas"]
- step_size_min, step_size_max = group["step_sizes"]
- foreach = group["foreach"]
- maximize = group["maximize"]
- has_complex = self._init_group(
- group, params, grads, prevs, step_sizes, state_steps
- )
- rprop(
- params,
- grads,
- prevs,
- step_sizes,
- state_steps,
- step_size_min=step_size_min,
- step_size_max=step_size_max,
- etaminus=etaminus,
- etaplus=etaplus,
- foreach=foreach,
- maximize=maximize,
- differentiable=group["differentiable"],
- capturable=group["capturable"],
- has_complex=has_complex,
- )
- return loss
- Rprop.__doc__ = (
- r"""Implements the resilient backpropagation algorithm.
- .. math::
- \begin{aligned}
- &\rule{110mm}{0.4pt} \\
- &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta)
- \text{ (objective)}, \\
- &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min}
- \text{ (step sizes)} \\
- &\textbf{initialize} : g^0_{prev} \leftarrow 0,
- \: \eta_0 \leftarrow \text{lr (learning rate)} \\
- &\rule{110mm}{0.4pt} \\
- &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
- &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
- &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\
- &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\
- &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+},
- \Gamma_{max}) \\
- &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\
- &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-},
- \Gamma_{min}) \\
- &\hspace{15mm} g^i_t \leftarrow 0 \\
- &\hspace{10mm} \textbf{else} \: \\
- &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\
- &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\
- &\hspace{5mm}g_{prev} \leftarrow g_t \\
- &\rule{110mm}{0.4pt} \\[-1.ex]
- &\bf{return} \: \theta_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- \end{aligned}
- For further details regarding the algorithm we refer to the paper
- `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
- <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.
- """
- + rf"""
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-2)
- etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that
- are multiplicative increase and decrease factors
- (default: (0.5, 1.2))
- step_sizes (Tuple[float, float], optional): a pair of minimal and
- maximal allowed step sizes (default: (1e-6, 50))
- {_foreach_doc}
- {_capturable_doc}
- {_maximize_doc}
- {_differentiable_doc}
- """
- )
- def _single_tensor_rprop(
- params: List[Tensor],
- grads: List[Tensor],
- prevs: List[Tensor],
- step_sizes: List[Tensor],
- state_steps: List[Tensor],
- *,
- step_size_min: float,
- step_size_max: float,
- etaminus: float,
- etaplus: float,
- maximize: bool,
- capturable: bool,
- differentiable: bool,
- has_complex: bool,
- ):
- for i, param in enumerate(params):
- grad = grads[i]
- grad = grad if not maximize else -grad
- prev = prevs[i]
- step_size = step_sizes[i]
- step = state_steps[i]
- # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
- if not torch._utils.is_compiling() and capturable:
- capturable_supported_devices = _get_capturable_supported_devices()
- assert (
- param.device.type == step.device.type
- and param.device.type in capturable_supported_devices
- ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
- step += 1
- if torch.is_complex(param):
- grad = torch.view_as_real(grad)
- prev = torch.view_as_real(prev)
- param = torch.view_as_real(param)
- step_size = torch.view_as_real(step_size)
- if differentiable:
- sign = grad.mul(prev.clone()).sign()
- else:
- sign = grad.mul(prev).sign()
- if capturable:
- sign.copy_(torch.where(sign.gt(0), etaplus, sign))
- sign.copy_(torch.where(sign.lt(0), etaminus, sign))
- sign.copy_(torch.where(sign.eq(0), 1, sign))
- else:
- sign[sign.gt(0)] = etaplus
- sign[sign.lt(0)] = etaminus
- sign[sign.eq(0)] = 1
- # update stepsizes with step size updates
- step_size.mul_(sign).clamp_(step_size_min, step_size_max)
- # for dir<0, dfdx=0
- # for dir>=0 dfdx=dfdx
- grad = grad.clone(memory_format=torch.preserve_format)
- if capturable:
- grad.copy_(torch.where(sign.eq(etaminus), 0, grad))
- else:
- grad[sign.eq(etaminus)] = 0
- # update parameters
- param.addcmul_(grad.sign(), step_size, value=-1)
- prev.copy_(grad)
- def _multi_tensor_rprop(
- params: List[Tensor],
- grads: List[Tensor],
- prevs: List[Tensor],
- step_sizes: List[Tensor],
- state_steps: List[Tensor],
- *,
- step_size_min: float,
- step_size_max: float,
- etaminus: float,
- etaplus: float,
- maximize: bool,
- capturable: bool,
- differentiable: bool,
- has_complex: bool,
- ):
- if len(params) == 0:
- return
- assert not differentiable, "_foreach ops don't support autograd"
- # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
- if not torch._utils.is_compiling() and capturable:
- capturable_supported_devices = _get_capturable_supported_devices()
- assert all(
- p.device.type == step.device.type
- and p.device.type in capturable_supported_devices
- for p, step in zip(params, state_steps)
- ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
- grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
- [params, grads, prevs, step_sizes, state_steps]
- )
- for (
- grouped_params,
- grouped_grads,
- grouped_prevs,
- grouped_step_sizes,
- grouped_state_steps,
- ), _ in grouped_tensors.values():
- # Update steps
- # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
- # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
- # wrapped it once now. The alpha is required to assure we go to the right overload.
- if grouped_state_steps[0].is_cpu:
- torch._foreach_add_(
- grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
- )
- else:
- torch._foreach_add_(grouped_state_steps, 1)
- # Handle complex params
- if has_complex:
- _view_as_real(
- grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes
- )
- signs = torch._foreach_mul(grouped_grads, grouped_prevs)
- if maximize:
- torch._foreach_neg_(signs)
- # At the end of the step, grouped_prevs will contain the current grads, so we reuse
- # grouped_prevs memory instead of creating a new buffer, but, for clarity, we reassign
- # to keep referring to the buffer as grouped_grads.
- torch._foreach_copy_(grouped_prevs, grouped_grads)
- if maximize:
- torch._foreach_neg_(grouped_prevs)
- grouped_grads = grouped_prevs
- torch._foreach_sign_(signs)
- if capturable:
- for sign in signs:
- sign.copy_(torch.where(sign.gt(0), etaplus, sign))
- sign.copy_(torch.where(sign.lt(0), etaminus, sign))
- sign.copy_(torch.where(sign.eq(0), 1, sign))
- else:
- for sign in signs:
- sign[sign.gt(0)] = etaplus
- sign[sign.lt(0)] = etaminus
- sign[sign.eq(0)] = 1
- # update stepsizes with step size updates
- torch._foreach_mul_(grouped_step_sizes, signs)
- for step_size in grouped_step_sizes:
- step_size.clamp_(step_size_min, step_size_max)
- # for dir<0, dfdx=0
- # for dir>=0 dfdx=dfdx
- grouped_grads = list(grouped_grads)
- for i in range(len(grouped_grads)):
- grouped_grads[i].copy_(
- torch.where(signs[i].eq(etaminus), 0, grouped_grads[i])
- )
- # explicitly del signs as it's not used after here to save memory
- del signs
- # update parameters
- grad_signs = [grad.sign() for grad in grouped_grads]
- torch._foreach_addcmul_(
- grouped_params, grad_signs, grouped_step_sizes, value=-1
- )
- # Logically, you may expect grouped_prevs to get updated to grouped_grads, but that's
- # basically already happened since we've been using grouped_prevs' memory to store
- # updated grouped_grads!
- @_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rprop)
- def rprop(
- params: List[Tensor],
- grads: List[Tensor],
- prevs: List[Tensor],
- step_sizes: List[Tensor],
- state_steps: List[Tensor],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- foreach: Optional[bool] = None,
- capturable: bool = False,
- maximize: bool = False,
- differentiable: bool = False,
- has_complex: bool = False,
- *,
- step_size_min: float,
- step_size_max: float,
- etaminus: float,
- etaplus: float,
- ):
- r"""Functional API that performs rprop algorithm computation.
- See :class:`~torch.optim.Rprop` for details.
- """
- # this check is slow during compilation, so we skip it
- # if it's strictly needed we can add this check back in dynamo
- if not torch._utils.is_compiling() and not all(
- isinstance(t, torch.Tensor) for t in state_steps
- ):
- raise RuntimeError(
- "API has changed, `state_steps` argument must contain a list of singleton tensors"
- )
- if foreach is None:
- _, foreach = _default_to_fused_or_foreach(
- params, differentiable, use_fused=False
- )
- if foreach and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with foreach optimizers")
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_rprop
- else:
- func = _single_tensor_rprop
- func(
- params,
- grads,
- prevs,
- step_sizes,
- state_steps,
- step_size_min=step_size_min,
- step_size_max=step_size_max,
- etaminus=etaminus,
- etaplus=etaplus,
- capturable=capturable,
- maximize=maximize,
- differentiable=differentiable,
- has_complex=has_complex,
- )
|