| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- # mypy: allow-untyped-defs
- from typing import List, Optional
- import torch
- from torch import Tensor
- from torch.utils._foreach_utils import _get_fused_kernels_supported_devices
- from .optimizer import (
- _default_to_fused_or_foreach,
- _differentiable_doc,
- _foreach_doc,
- _fused_doc,
- _maximize_doc,
- _use_grad_for_differentiable,
- DeviceDict,
- Optimizer,
- )
- __all__ = ["SGD", "sgd"]
- class SGD(Optimizer):
- def __init__(
- self,
- params,
- lr: float = 1e-3,
- momentum: float = 0,
- dampening: float = 0,
- weight_decay: float = 0,
- nesterov=False,
- *,
- maximize: bool = False,
- foreach: Optional[bool] = None,
- differentiable: bool = False,
- fused: Optional[bool] = None,
- ):
- if lr < 0.0:
- raise ValueError(f"Invalid learning rate: {lr}")
- if momentum < 0.0:
- raise ValueError(f"Invalid momentum value: {momentum}")
- if weight_decay < 0.0:
- raise ValueError(f"Invalid weight_decay value: {weight_decay}")
- defaults = dict(
- lr=lr,
- momentum=momentum,
- dampening=dampening,
- weight_decay=weight_decay,
- nesterov=nesterov,
- maximize=maximize,
- foreach=foreach,
- differentiable=differentiable,
- fused=fused,
- )
- if nesterov and (momentum <= 0 or dampening != 0):
- raise ValueError("Nesterov momentum requires a momentum and zero dampening")
- super().__init__(params, defaults)
- if fused:
- self._step_supports_amp_scaling = True
- fused_supported_devices = _get_fused_kernels_supported_devices()
- if not all(
- p.device.type in fused_supported_devices and torch.is_floating_point(p)
- for pg in self.param_groups
- for p in pg["params"]
- ):
- raise RuntimeError(
- "`fused=True` requires all the params to be floating point Tensors of "
- f"supported devices: {fused_supported_devices}."
- )
- if differentiable:
- raise RuntimeError("`fused` does not support `differentiable`")
- if foreach:
- raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault("nesterov", False)
- group.setdefault("maximize", False)
- group.setdefault("foreach", None)
- group.setdefault("differentiable", False)
- group.setdefault("fused", False)
- def _init_group(self, group, params, grads, momentum_buffer_list):
- has_sparse_grad = False
- for p in group["params"]:
- if p.grad is not None:
- params.append(p)
- grads.append(p.grad)
- if p.grad.is_sparse:
- has_sparse_grad = True
- if group["momentum"] != 0:
- state = self.state[p]
- momentum_buffer_list.append(state.get("momentum_buffer"))
- return has_sparse_grad
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params: List[Tensor] = []
- grads: List[Tensor] = []
- momentum_buffer_list: List[Optional[Tensor]] = []
- has_sparse_grad = self._init_group(
- group, params, grads, momentum_buffer_list
- )
- sgd(
- params,
- grads,
- momentum_buffer_list,
- weight_decay=group["weight_decay"],
- momentum=group["momentum"],
- lr=group["lr"],
- dampening=group["dampening"],
- nesterov=group["nesterov"],
- maximize=group["maximize"],
- has_sparse_grad=has_sparse_grad,
- foreach=group["foreach"],
- fused=group["fused"],
- grad_scale=getattr(self, "grad_scale", None),
- found_inf=getattr(self, "found_inf", None),
- )
- if group["momentum"] != 0:
- # update momentum_buffers in state
- for p, momentum_buffer in zip(params, momentum_buffer_list):
- state = self.state[p]
- state["momentum_buffer"] = momentum_buffer
- return loss
- SGD.__doc__ = (
- r"""Implements stochastic gradient descent (optionally with momentum).
- .. math::
- \begin{aligned}
- &\rule{110mm}{0.4pt} \\
- &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
- \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\
- &\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)},
- \:\textit{ nesterov,}\:\textit{ maximize} \\[-1.ex]
- &\rule{110mm}{0.4pt} \\
- &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
- &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
- &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\
- &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
- &\hspace{5mm}\textbf{if} \: \mu \neq 0 \\
- &\hspace{10mm}\textbf{if} \: t > 1 \\
- &\hspace{15mm} \textbf{b}_t \leftarrow \mu \textbf{b}_{t-1} + (1-\tau) g_t \\
- &\hspace{10mm}\textbf{else} \\
- &\hspace{15mm} \textbf{b}_t \leftarrow g_t \\
- &\hspace{10mm}\textbf{if} \: \textit{nesterov} \\
- &\hspace{15mm} g_t \leftarrow g_{t} + \mu \textbf{b}_t \\
- &\hspace{10mm}\textbf{else} \\[-1.ex]
- &\hspace{15mm} g_t \leftarrow \textbf{b}_t \\
- &\hspace{5mm}\textbf{if} \: \textit{maximize} \\
- &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} + \gamma g_t \\[-1.ex]
- &\hspace{5mm}\textbf{else} \\[-1.ex]
- &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- &\bf{return} \: \theta_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- \end{aligned}
- Nesterov momentum is based on the formula from
- `On the importance of initialization and momentum in deep learning`__.
- """
- + rf"""
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-3)
- momentum (float, optional): momentum factor (default: 0)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
- dampening (float, optional): dampening for momentum (default: 0)
- nesterov (bool, optional): enables Nesterov momentum (default: False)
- {_maximize_doc}
- {_foreach_doc}
- {_differentiable_doc}
- {_fused_doc}
- """
- + r"""
- Example:
- >>> # xdoctest: +SKIP
- >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
- >>> optimizer.zero_grad()
- >>> loss_fn(model(input), target).backward()
- >>> optimizer.step()
- __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
- .. note::
- The implementation of SGD with Momentum/Nesterov subtly differs from
- Sutskever et al. and implementations in some other frameworks.
- Considering the specific case of Momentum, the update can be written as
- .. math::
- \begin{aligned}
- v_{t+1} & = \mu * v_{t} + g_{t+1}, \\
- p_{t+1} & = p_{t} - \text{lr} * v_{t+1},
- \end{aligned}
- where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the
- parameters, gradient, velocity, and momentum respectively.
- This is in contrast to Sutskever et al. and
- other frameworks which employ an update of the form
- .. math::
- \begin{aligned}
- v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\
- p_{t+1} & = p_{t} - v_{t+1}.
- \end{aligned}
- The Nesterov version is analogously modified.
- Moreover, the initial value of the momentum buffer is set to the
- gradient value at the first step. This is in contrast to some other
- frameworks that initialize it to all zeros.
- """
- )
- def sgd(
- params: List[Tensor],
- d_p_list: List[Tensor],
- momentum_buffer_list: List[Optional[Tensor]],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- has_sparse_grad: bool = False,
- foreach: Optional[bool] = None,
- fused: Optional[bool] = None,
- grad_scale: Optional[Tensor] = None,
- found_inf: Optional[Tensor] = None,
- *,
- weight_decay: float,
- momentum: float,
- lr: float,
- dampening: float,
- nesterov: bool,
- maximize: bool,
- ):
- r"""Functional API that performs SGD algorithm computation.
- See :class:`~torch.optim.SGD` for details.
- """
- # Respect when the user inputs False/True for foreach or fused. We only want to change
- # the default when neither have been user-specified. Note that we default to foreach
- # and pass False to use_fused. This is not a mistake--we want to give the fused impl
- # bake-in time before making it the default, even if it is typically faster.
- if foreach is None and fused is None:
- # why must we be explicit about an if statement for torch.jit.is_scripting here?
- # because JIT can't handle Optionals nor fancy conditionals when scripting
- if not torch.jit.is_scripting():
- fused, foreach = _default_to_fused_or_foreach(
- params, differentiable=False, use_fused=False
- )
- else:
- foreach = False
- fused = False
- if foreach is None:
- foreach = False
- if fused is None:
- fused = False
- if foreach and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with foreach optimizers")
- if fused and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with fused optimizers")
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_sgd
- elif fused and not torch.jit.is_scripting():
- func = _fused_sgd
- else:
- func = _single_tensor_sgd
- func(
- params,
- d_p_list,
- momentum_buffer_list,
- weight_decay=weight_decay,
- momentum=momentum,
- lr=lr,
- dampening=dampening,
- nesterov=nesterov,
- has_sparse_grad=has_sparse_grad,
- maximize=maximize,
- grad_scale=grad_scale,
- found_inf=found_inf,
- )
- def _single_tensor_sgd(
- params: List[Tensor],
- grads: List[Tensor],
- momentum_buffer_list: List[Optional[Tensor]],
- grad_scale: Optional[Tensor],
- found_inf: Optional[Tensor],
- *,
- weight_decay: float,
- momentum: float,
- lr: float,
- dampening: float,
- nesterov: bool,
- maximize: bool,
- has_sparse_grad: bool,
- ):
- assert grad_scale is None and found_inf is None
- for i, param in enumerate(params):
- grad = grads[i] if not maximize else -grads[i]
- if weight_decay != 0:
- grad = grad.add(param, alpha=weight_decay)
- if momentum != 0:
- buf = momentum_buffer_list[i]
- if buf is None:
- buf = torch.clone(grad).detach()
- momentum_buffer_list[i] = buf
- else:
- buf.mul_(momentum).add_(grad, alpha=1 - dampening)
- if nesterov:
- grad = grad.add(buf, alpha=momentum)
- else:
- grad = buf
- param.add_(grad, alpha=-lr)
- def _multi_tensor_sgd(
- params: List[Tensor],
- grads: List[Tensor],
- momentum_buffer_list: List[Optional[Tensor]],
- grad_scale: Optional[Tensor],
- found_inf: Optional[Tensor],
- *,
- weight_decay: float,
- momentum: float,
- lr: float,
- dampening: float,
- nesterov: bool,
- maximize: bool,
- has_sparse_grad: bool,
- ):
- assert grad_scale is None and found_inf is None
- if len(params) == 0:
- return
- grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
- [params, grads, momentum_buffer_list], with_indices=True # type: ignore[list-item]
- )
- for (
- device_params,
- device_grads,
- device_momentum_buffer_list,
- ), indices in grouped_tensors.values():
- device_has_sparse_grad = has_sparse_grad and any(
- grad.is_sparse for grad in device_grads
- )
- if maximize:
- device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
- if weight_decay != 0:
- # Re-use the intermediate memory (device_grads) already allocated for maximize
- if maximize:
- torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
- else:
- device_grads = torch._foreach_add( # type: ignore[assignment]
- device_grads, device_params, alpha=weight_decay
- )
- if momentum != 0:
- bufs = []
- all_states_with_momentum_buffer = True
- for i in range(len(device_momentum_buffer_list)):
- if device_momentum_buffer_list[i] is None:
- all_states_with_momentum_buffer = False
- break
- else:
- bufs.append(device_momentum_buffer_list[i])
- if all_states_with_momentum_buffer:
- torch._foreach_mul_(bufs, momentum)
- torch._foreach_add_(bufs, device_grads, alpha=1 - dampening)
- else:
- bufs = []
- for i in range(len(device_momentum_buffer_list)):
- if device_momentum_buffer_list[i] is None:
- buf = device_momentum_buffer_list[i] = momentum_buffer_list[
- indices[i]
- ] = torch.clone(device_grads[i]).detach()
- else:
- buf = device_momentum_buffer_list[i]
- buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening)
- bufs.append(buf)
- if nesterov:
- torch._foreach_add_(device_grads, bufs, alpha=momentum)
- else:
- device_grads = bufs
- if not device_has_sparse_grad:
- # handle internal item() call if lr is a tensor
- if isinstance(lr, torch.Tensor) and torch._utils.is_compiling():
- grads_x_lr = torch._foreach_mul(device_grads, -lr)
- torch._foreach_add_(device_params, grads_x_lr)
- else:
- torch._foreach_add_(device_params, device_grads, alpha=-lr)
- else:
- # foreach APIs don't support sparse
- for i in range(len(device_params)):
- device_params[i].add_(device_grads[i], alpha=-lr)
- def _fused_sgd(
- params: List[Tensor],
- grads: List[Tensor],
- momentum_buffer_list: List[Optional[Tensor]],
- grad_scale: Optional[Tensor],
- found_inf: Optional[Tensor],
- *,
- weight_decay: float,
- momentum: float,
- lr: float,
- dampening: float,
- nesterov: bool,
- maximize: bool,
- has_sparse_grad: bool,
- ) -> None:
- if not params:
- return
- if has_sparse_grad:
- raise RuntimeError("`_fused_sgd` does not support sparse gradients")
- grad_scale_dict: DeviceDict = (
- {grad_scale.device: grad_scale} if grad_scale is not None else {}
- )
- found_inf_dict: DeviceDict = (
- {found_inf.device: found_inf} if found_inf is not None else {}
- )
- no_momentum_buffer = momentum == 0
- is_first_step = (
- all(t is None for t in momentum_buffer_list) and not no_momentum_buffer
- )
- if is_first_step:
- for i, g in enumerate(grads):
- momentum_buffer_list[i] = torch.empty_like(g)
- grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
- [params, grads, momentum_buffer_list], with_indices=False # type: ignore[list-item]
- )
- for (device, _), (
- (device_params, device_grads, device_momentum_buffer_list),
- _,
- ) in grouped_tensors.items():
- device_grad_scale, device_found_inf = None, None
- if grad_scale is not None:
- device_grad_scale = grad_scale_dict.setdefault(
- device, grad_scale.to(device)
- )
- if found_inf_dict is not None and found_inf is not None:
- device_found_inf = found_inf_dict.setdefault(device, found_inf.to(device))
- torch._fused_sgd_(
- device_params,
- device_grads,
- [] if no_momentum_buffer else device_momentum_buffer_list,
- weight_decay=weight_decay,
- momentum=momentum,
- lr=lr,
- dampening=dampening,
- nesterov=nesterov,
- maximize=maximize,
- is_first_step=is_first_step,
- grad_scale=device_grad_scale,
- found_inf=device_found_inf,
- )
|