| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986 |
- # mypy: ignore-errors
- from abc import abstractmethod
- import tempfile
- import unittest
- from copy import deepcopy
- from functools import reduce, partial
- from itertools import product
- from operator import mul
- import torch
- import torch.cuda
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn import _reduction as _Reduction
- from torch.testing._internal.common_utils import TestCase, to_gpu, freeze_rng_state, is_iterable, \
- gradcheck, gradgradcheck, set_default_dtype, skipIfTorchDynamo
- from torch.testing._internal.common_cuda import TEST_CUDA, SM90OrLater
- from torch.autograd.gradcheck import _get_numerical_jacobian, _iter_tensors
- from torch.autograd import Variable
- from torch.types import _TensorOrTensors
- import torch.backends.cudnn
- from typing import Dict, Callable, Tuple, List, Sequence, Union, Any
- TemporaryFile = tempfile.TemporaryFile
- PRECISION = 1e-5
- def get_reduction(m):
- result = getattr(m, 'reduction', None)
- if result is None:
- result = _Reduction.legacy_get_string(getattr(m, 'sizeAverage', None), True, emit_warning=False)
- assert result is not None
- return result
- def get_weight(m):
- result = getattr(m, 'weight', None)
- if result is not None:
- return result
- return getattr(m, 'weights', None)
- # NOTE [How to check NN module / functional API parity between Python and C++ frontends]
- #
- # The way to check API parity is to add parity tests for the NN module / functional of interest.
- # Here are the detailed steps:
- #
- # For NN module:
- # 1. Make sure you already have a test dict with the module configuration you want to test.
- # 2. Add `cpp_constructor_args` entry to the test dict, with its value exactly matching
- # the Python module constructor arguments. For example, if in the test dict we pass
- # `(10, 8)` to `torch.nn.Linear` constructor, then we should pass `torch::nn::LinearOptions(10, 8)`
- # as the corresponding C++ constructor argument to `torch::nn::Linear`.
- # 3. If in the process of performing the above step you referenced any variables
- # in the `cpp_constructor_args` entry, you must add `cpp_var_map` entry
- # to the test dict to make sure that those variables are populated with the right Python values.
- # For example, if the Python constructor call is
- # `torch.nn.FractionalMaxPool2d(2, output_ratio=0.5, _random_samples=random_samples)`,
- # the corresponding C++ constructor argument is
- # `torch::nn::FractionalMaxPool2dOptions(2).output_ratio(0.5)._random_samples(random_samples)`,
- # and the `cpp_var_map` entry must be
- # `{'random_samples': random_samples}` in order to populate the C++ variable `random_samples`
- # used in the C++ constructor argument with the Python tensor value `random_samples`.
- #
- # For NN functional:
- # 1. Make sure you already have a test dict with the functional configuration you want to test.
- # 2. If the test dict's `constructor` entry looks like `wrap_functional(F.some_functional_name, ...)`,
- # then you must add `cpp_options_args` entry to the test dict, with its value exactly matching the Python
- # functional optional arguments. For example, if the test dict's `constructor` entry is
- # `wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest')`,
- # then the `cpp_options_args` entry should be
- # "F::InterpolateFuncOptions().size(std::vector<int64_t>({12})).scale_factor(c10::nullopt).mode(torch::kNearest)".
- # 3. Otherwise, if the test dict's `constructor` entry looks like
- # `wrap_functional(lambda i: F.some_functional_name(...))`,
- # then you must add `cpp_function_call` entry to the test dict, with its value exactly matching the Python
- # functional function call. For example, if the test dict's `constructor` entry is
- # `wrap_functional(lambda i: F.poisson_nll_loss(i, t.type_as(i), reduction='none'))`,
- # then the `cpp_function_call` entry should be
- # "F::poisson_nll_loss(i, t.to(i.options()), F::PoissonNLLLossFuncOptions().reduction(torch::kNone))".
- # 4. If in the process of performing the above two steps you referenced any variables
- # in the `cpp_options_args` or `cpp_function_call` entry, you must
- # add `cpp_var_map` entry to the test dict to make sure that those variables
- # are populated with the right Python values. For example, if the test dict's `constructor` entry is
- # `wrap_functional(lambda i: F.poisson_nll_loss(i, t.type_as(i), reduction='none'))`,
- # then the `cpp_function_call` entry should be
- # "F::poisson_nll_loss(i, t.to(i.options()), F::PoissonNLLLossFuncOptions().reduction(torch::kNone))".
- # Notice that there are two variables `i` and `t` that need to have their values provided,
- # and the way to do so is to add a `cpp_var_map` entry: `cpp_var_map={'i': '_get_input()', 't': t}`.
- # (Note that for `i`, since we want it to take the Python input value, we pass '_get_input()' string as value
- # and the C++ parity test mechanism will populate `i` with the Python input value correctly.)
- #
- # There are also a few optional flags in the test dict to control the C++ parity test behavior:
- #
- # - `test_cpp_api_parity`: if `False`, skips the C++ parity test for this test dict. Default: True.
- # - `has_parity`: if `False`, expects this test dict to fail the C++ parity test. Default: True.
- module_tests = [
- dict(
- module_name='Linear',
- constructor_args=(10, 8),
- cpp_constructor_args='torch::nn::LinearOptions(10, 8)',
- input_size=(4, 10),
- reference_fn=lambda i, p, _: torch.mm(i, p[0].t()) + p[1].view(1, -1).expand(4, 8),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Linear',
- constructor_args=(10, 8, False),
- cpp_constructor_args='torch::nn::LinearOptions(10, 8).bias(false)',
- input_size=(4, 10),
- desc='no_bias',
- reference_fn=lambda i, p, _: torch.mm(i, p[0].t()),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='RReLU',
- input_size=(1, 2, 2),
- test_cuda=False,
- default_dtype=torch.double,
- ),
- dict(
- module_name='RReLU',
- constructor_args=(0.1, 0.9),
- cpp_constructor_args='torch::nn::RReLUOptions().lower(0.1).upper(0.9)',
- input_size=(4, 4, 5),
- desc='with_up_down',
- test_cuda=False,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Flatten',
- input_size=(2, 3, 4, 5),
- reference_fn=lambda i, *_: torch.flatten(i, 1),
- default_dtype=torch.double,
- ),
- # TODO: reference function
- dict(
- module_name='CrossMapLRN2d',
- constructor_args=(5, 5e-3, 1e-3, 2),
- cpp_constructor_args='torch::nn::CrossMapLRN2dOptions(5).alpha(5e-3).beta(1e-3).k(2)',
- input_size=(2, 3, 6, 6),
- check_gradgrad=False,
- # TODO(#50743): Figure out the error. "RuntimeError: Unrecognized tensor type ID: Batched"
- check_batched_grad=False,
- default_dtype=torch.double,
- ),
- ]
- # Generates rand tensor with non-equal values. This ensures that duplicate
- # values won't be causing test failure for modules like MaxPooling.
- # size should be small, otherwise randperm fails / long overflows.
- def _rand_tensor_non_equal(*size):
- total = reduce(mul, size, 1)
- return torch.randperm(total).view(*size).double()
- def wrap_functional(fn, **kwargs):
- class FunctionalModule(nn.Module):
- def forward(self, *args):
- return fn(*args, **kwargs)
- return FunctionalModule
- def poissonnllloss_no_reduce_test():
- t = torch.randn(10, 10)
- return dict(
- fullname='PoissonNLLLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.poisson_nll_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::poisson_nll_loss('
- 'i, t.to(i.options()), F::PoissonNLLLossFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(10, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: i.exp() - t.mul(i),
- pickle=False,
- default_dtype=torch.double)
- def bceloss_no_reduce_test():
- t = Variable(torch.randn(15, 10).gt(0).to(torch.double))
- return dict(
- fullname='BCELoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::binary_cross_entropy('
- 'i, t.to(i.options()), F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: -(t * i.log() + (1 - t) * (1 - i).log()),
- pickle=False,
- precision=7e-4,
- default_dtype=torch.double)
- def bceloss_no_reduce_scalar_test():
- t = torch.randn(()).gt(0).to(torch.double)
- return dict(
- fullname='BCELoss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::binary_cross_entropy('
- 'i, t.to(i.options()), F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: -(t * i.log() + (1 - t) * (1 - i).log()),
- pickle=False,
- default_dtype=torch.double)
- def bceloss_weights_no_reduce_test():
- t = Variable(torch.randn(15, 10, dtype=torch.double).gt(0).to(torch.double))
- weights = torch.rand(10, dtype=torch.double)
- return dict(
- fullname='BCELoss_weights_no_reduce',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy(i, t.type_as(i),
- weight=weights.type_as(i), reduction='none')),
- cpp_function_call='F::binary_cross_entropy('
- 'i, t.to(i.options()), '
- 'F::BinaryCrossEntropyFuncOptions().weight(weights.to(i.options())).reduction(torch::kNone))',
- input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
- reference_fn=lambda i, p, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
- pickle=False,
- precision=3e-4,
- default_dtype=torch.double,
- )
- def bceloss_weights_no_reduce_scalar_test():
- t = torch.randn(()).gt(0).to(torch.double)
- weights = torch.rand((), dtype=torch.double)
- return dict(
- fullname='BCELoss_weights_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy(i, t.type_as(i),
- weight=weights.type_as(i), reduction='none')),
- cpp_function_call='''F::binary_cross_entropy(
- i, t.to(i.options()),
- F::BinaryCrossEntropyFuncOptions().weight(weights.to(i.options())).reduction(torch::kNone))''',
- cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
- input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2),
- reference_fn=lambda i, *_: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
- pickle=False,
- default_dtype=torch.double,
- )
- def bce_with_logistic_legacy_enum_test():
- t = Variable(torch.randn(15, 10).gt(0).to(torch.double))
- sigmoid = nn.Sigmoid()
- return dict(
- fullname='BCEWithLogitsLoss_legacy_enum',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduce=False)),
- cpp_function_call='''F::binary_cross_entropy_with_logits(
- i, t.to(i.options()), F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()),
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double,
- )
- def bce_with_logistic_no_reduce_test():
- t = Variable(torch.randn(15, 10).gt(0).to(torch.double))
- sigmoid = nn.Sigmoid()
- return dict(
- fullname='BCEWithLogitsLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::binary_cross_entropy_with_logits(
- i, t.to(i.options()), F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()),
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double,
- )
- def bce_with_logistic_no_reduce_scalar_test():
- t = torch.randn(()).gt(0).to(torch.double)
- sigmoid = nn.Sigmoid()
- return dict(
- fullname='BCEWithLogitsLoss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::binary_cross_entropy_with_logits(
- i, t.to(i.options()), F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()),
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double,
- )
- def kldivloss_with_target_no_reduce_test():
- t = torch.rand(10, 10, dtype=torch.double)
- return dict(
- fullname='KLDivLoss_with_target_no_reduce',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(10, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def kldivloss_no_reduce_test():
- t = torch.rand(10, 10, dtype=torch.double)
- return dict(
- fullname='KLDivLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(10, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double,
- )
- def kldivloss_no_reduce_scalar_test():
- t = torch.rand((), dtype=torch.double)
- return dict(
- fullname='KLDivLoss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.rand(()).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def kldivloss_with_log_target_no_reduce_test():
- t = torch.rand(10, 10, dtype=torch.double).log()
- return dict(
- fullname='KLDivLoss_with_log_target_no_reduce',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none', log_target=True)),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone).log_target(true))',
- input_fn=lambda: torch.rand(10, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss_log_target'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def kldivloss_no_reduce_log_target_test():
- t = torch.rand(10, 10, dtype=torch.double).log()
- return dict(
- fullname='KLDivLoss_no_reduce_log_target',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none', log_target=True)),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone).log_target(true))',
- input_fn=lambda: torch.rand(10, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss_log_target'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double,
- )
- def kldivloss_no_reduce_scalar_log_target_test():
- t = torch.rand((), dtype=torch.double).log()
- return dict(
- fullname='KLDivLoss_no_reduce_scalar_log_target',
- constructor=wrap_functional(
- lambda i: F.kl_div(i, t.type_as(i), reduction='none', log_target=True)),
- cpp_function_call='F::kl_div(i, t.to(i.options()), F::KLDivFuncOptions().reduction(torch::kNone).log_target(true))',
- input_fn=lambda: torch.rand(()).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['KLDivLoss_log_target'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def l1loss_no_reduce_test():
- t = torch.randn(2, 3, 4, dtype=torch.double)
- return dict(
- fullname='L1Loss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.l1_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::l1_loss(i, t.to(i.options()), F::L1LossFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.randn(2, 3, 4),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: (i - t.type_as(i)).abs(),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def l1loss_no_reduce_complex_test():
- t = torch.randn(2, 3, 4, dtype=torch.cdouble)
- return dict(
- fullname='L1Loss_no_reduce_complex',
- constructor=wrap_functional(
- lambda i: F.l1_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::l1_loss(i, t.to(i.options()), F::L1LossFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.randn(2, 3, 4, dtype=torch.cdouble),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: (i - t.type_as(i)).abs(),
- supports_forward_ad=True,
- pickle=False)
- def l1loss_no_reduce_scalar_test():
- t = torch.randn((), dtype=torch.double)
- return dict(
- fullname='L1Loss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.l1_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='F::l1_loss(i, t.to(i.options()), F::L1LossFuncOptions().reduction(torch::kNone))',
- input_fn=lambda: torch.randn(()),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_: (i - t.type_as(i)).abs(),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def mseloss_no_reduce_test():
- input_size = (2, 3, 4, 5)
- target = torch.randn(*input_size, dtype=torch.double)
- return dict(
- fullname='MSELoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.mse_loss(i, target.type_as(i), reduction='none')),
- cpp_function_call='F::mse_loss(i, target.to(i.options()), F::MSELossFuncOptions().reduction(torch::kNone))',
- input_size=input_size,
- cpp_var_map={'i': '_get_input()', 'target': target},
- reference_fn=lambda i, *_: (i - target).pow(2),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def mseloss_no_reduce_scalar_test():
- input_size = ()
- target = torch.randn(input_size, dtype=torch.double)
- return dict(
- fullname='MSELoss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.mse_loss(i, target.type_as(i), reduction='none')),
- cpp_function_call='F::mse_loss(i, target.to(i.options()), F::MSELossFuncOptions().reduction(torch::kNone))',
- input_size=input_size,
- cpp_var_map={'i': '_get_input()', 'target': target},
- reference_fn=lambda i, *_: (i - target).pow(2),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def nllloss_no_reduce_test():
- t = Variable(torch.empty(15).uniform_().mul(10).floor().long())
- kwargs = {'reduction': 'none'}
- return dict(
- fullname='NLLLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), reduction=kwargs['reduction'])),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(15, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nllloss_no_reduce_ignore_index_test():
- t = Variable(torch.empty(15).uniform_().mul(10).floor().long())
- kwargs: Dict[str, Union[int, str]] = {'ignore_index': 2, 'reduction': 'none'}
- return dict(
- fullname='NLLLoss_no_reduce_ignore_index',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), ignore_index=int(kwargs['ignore_index']),
- reduction=str(kwargs['reduction']))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().ignore_index(2).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(15, 10).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nllloss_no_reduce_weights_test():
- t = Variable(torch.empty(15).uniform_().mul(10).floor().long())
- weight = torch.rand(10)
- def kwargs(i):
- return {'weight': weight.type_as(i), 'reduction': 'none'}
- return dict(
- fullname='NLLLoss_no_reduce_weights',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::NLLLossFuncOptions().weight(weight.to(i.options())).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
- cpp_var_map={'i': '_get_input()', 't': t, 'weight': weight},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
- pickle=False,
- default_dtype=torch.double)
- def nllloss_no_reduce_weights_ignore_index_test():
- t = Variable(torch.empty(15).uniform_().mul(10).floor().long())
- weight = torch.rand(10)
- def kwargs(i):
- return {'weight': weight.type_as(i), 'reduction': 'none',
- 'ignore_index': 2}
- return dict(
- fullname='NLLLoss_no_reduce_weights_ignore_index',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::NLLLossFuncOptions().weight(weight.to(i.options())).reduction(torch::kNone).ignore_index(2))''',
- input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
- cpp_var_map={'i': '_get_input()', 't': t, 'weight': weight},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
- pickle=False,
- default_dtype=torch.double)
- def nllloss_no_reduce_weights_ignore_index_neg_test():
- t = Variable(torch.empty(15).uniform_().mul(10).floor().long())
- weight = torch.rand(10)
- def kwargs(i):
- return {'weight': weight.type_as(i), 'reduction': 'none',
- 'ignore_index': -1}
- return dict(
- fullname='NLLLoss_no_reduce_weights_ignore_index_neg',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::NLLLossFuncOptions().weight(weight.to(i.options())).reduction(torch::kNone).ignore_index(-1))''',
- input=torch.rand(15, 10, dtype=torch.double).add(1e-2).log(),
- cpp_var_map={'i': '_get_input()', 't': t, 'weight': weight},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
- pickle=False,
- default_dtype=torch.double)
- def nllloss2d_no_reduce_test():
- t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
- kwargs = {'reduction': 'none'}
- return dict(
- fullname='NLLLoss2d_no_reduce',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), reduction=kwargs['reduction'])),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nllloss2d_no_reduce_ignore_index_test():
- t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
- kwargs: Dict[str, Union[int, str]] = {'ignore_index': 1, 'reduction': 'none'}
- return dict(
- fullname='NLLLoss2d_no_reduce_ignore_index',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), ignore_index=int(kwargs['ignore_index']),
- reduction=str(kwargs['reduction']))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().ignore_index(1).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nllloss2d_no_reduce_weights_test():
- t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
- weight = torch.rand(3)
- def kwargs(i):
- return {'weight': weight.type_as(i), 'reduction': 'none'}
- return dict(
- fullname='NLLLoss2d_no_reduce_weights',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::NLLLossFuncOptions().weight(weight.to(i.options())).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
- cpp_var_map={'i': '_get_input()', 't': t, 'weight': weight},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
- pickle=False,
- default_dtype=torch.double)
- def nlllossNd_no_reduce_test():
- t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
- kwargs = {'reduction': 'none'}
- return dict(
- fullname='NLLLossNd_no_reduce',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), reduction=kwargs['reduction'])),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nlllossNd_no_reduce_ignore_index_test():
- t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
- kwargs: Dict[str, Union[int, str]] = {'ignore_index': 1, 'reduction': 'none'}
- return dict(
- fullname='NLLLossNd_no_reduce_ignore_index',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), ignore_index=int(kwargs['ignore_index']),
- reduction=str(kwargs['reduction']))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong), F::NLLLossFuncOptions().ignore_index(1).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
- pickle=False,
- default_dtype=torch.double)
- def nlllossNd_no_reduce_weights_test():
- t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
- weight = torch.rand(3)
- def kwargs(i):
- return {'weight': weight.type_as(i), 'reduction': 'none'}
- return dict(
- fullname='NLLLossNd_no_reduce_weights',
- constructor=wrap_functional(
- lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))),
- cpp_function_call='''F::nll_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::NLLLossFuncOptions().weight(weight.to(i.options())).reduction(torch::kNone))''',
- input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
- cpp_var_map={'i': '_get_input()', 't': t, 'weight': weight},
- reference_fn=lambda i, *_:
- loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
- pickle=False,
- default_dtype=torch.double)
- def smoothl1loss_no_reduce_test():
- t = torch.randn(2, 3, 4, dtype=torch.double)
- return dict(
- fullname='SmoothL1Loss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::smooth_l1_loss(
- i, t.to(i.options()), F::SmoothL1LossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(2, 3, 4),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def smoothl1loss_no_reduce_scalar_test():
- t = torch.randn((), dtype=torch.double)
- return dict(
- fullname='SmoothL1Loss_no_reduce_scalar',
- constructor=wrap_functional(
- lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::smooth_l1_loss(
- i, t.to(i.options()), F::SmoothL1LossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(()),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def smoothl1loss_beta_test():
- t = torch.randn(2, 3, 4, dtype=torch.double)
- return dict(
- fullname='SmoothL1Loss_beta',
- constructor=wrap_functional(
- lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none', beta=0.5)),
- cpp_function_call='''F::smooth_l1_loss(
- i, t.to(i.options()), F::SmoothL1LossFuncOptions().reduction(torch::kNone), 0.5)''',
- input_fn=lambda: torch.randn(2, 3, 4),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none', beta=0.5),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def smoothl1loss_zero_beta_test():
- t = torch.randn(2, 3, 4, dtype=torch.double)
- return dict(
- fullname='SmoothL1Loss_zero_beta',
- constructor=wrap_functional(
- lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none', beta=0)),
- cpp_function_call='''F::smooth_l1_loss(
- i, t.to(i.options()), F::SmoothL1LossFuncOptions().reduction(torch::kNone), 0)''',
- input_fn=lambda: torch.randn(2, 3, 4),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none', beta=0),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def huberloss_delta_test():
- t = torch.randn(2, 3, 4)
- return dict(
- fullname='HuberLoss_delta',
- constructor=wrap_functional(
- lambda i: F.huber_loss(i, t.type_as(i), reduction='none', delta=0.5)),
- cpp_function_call='''F::huber_loss(
- i, t.to(i.options()), F::HuberLossFuncOptions().reduction(torch::kNone).delta(0.5))''',
- input_fn=lambda: torch.randn(2, 3, 4),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['HuberLoss'](i, t.type_as(i), reduction='none', delta=0.5),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def multilabelmarginloss_0d_no_reduce_test():
- t = torch.zeros(()).long()
- return dict(
- fullname='MultiLabelMarginLoss_0d_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multilabel_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultilabelMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(()),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False)
- def multilabelmarginloss_1d_no_reduce_test():
- t = Variable(torch.rand(10).mul(10).floor().long())
- return dict(
- fullname='MultiLabelMarginLoss_1d_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multilabel_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultilabelMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multilabelmarginloss_index_neg_test():
- t = Variable(torch.clamp(torch.rand(5, 10).add(-.5).mul(20).floor().long(), min=-1))
- return dict(
- fullname='MultiLabelMarginLoss_index_neg',
- constructor=wrap_functional(
- lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multilabel_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultilabelMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multilabelmarginloss_no_reduce_test():
- t = Variable(torch.rand(5, 10).mul(10).floor().long())
- return dict(
- fullname='MultiLabelMarginLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multilabel_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultilabelMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def hingeembeddingloss_no_reduce_test():
- t = Variable(torch.randn(10).gt(0).to(torch.double).mul_(2).sub(1))
- return dict(
- fullname='HingeEmbeddingLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.hinge_embedding_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::hinge_embedding_loss(
- i, t.to(i.options()), F::HingeEmbeddingLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['HingeEmbeddingLoss'](i, t.type_as(i), reduction='none'),
- check_sum_reduction=True,
- pickle=False,
- default_dtype=torch.double)
- def hingeembeddingloss_margin_no_reduce_test():
- t = Variable(torch.randn(10).gt(0).to(torch.double).mul_(2).sub(1))
- return dict(
- fullname='HingeEmbeddingLoss_margin_no_reduce',
- constructor=wrap_functional(
- lambda i: F.hinge_embedding_loss(i, t.type_as(i), margin=0.5, reduction='none')),
- cpp_function_call='''F::hinge_embedding_loss(
- i, t.to(i.options()), F::HingeEmbeddingLossFuncOptions().margin(0.5).reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['HingeEmbeddingLoss'](i, t.type_as(i), margin=0.5, reduction='none'),
- check_sum_reduction=True,
- pickle=False,
- default_dtype=torch.double)
- def softmarginloss_no_reduce_test():
- t = torch.randn(5, 5, dtype=torch.double)
- return dict(
- fullname='SoftMarginLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.soft_margin_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::soft_margin_loss(
- i, t.to(i.options()), F::SoftMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 5),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['SoftMarginLoss'](i, t.type_as(i), reduction='none'),
- supports_forward_ad=True,
- pickle=False,
- default_dtype=torch.double)
- def multilabelsoftmarginloss_no_reduce_test():
- t = torch.rand(5, 10).mul(2).floor()
- return dict(
- fullname='MultiLabelSoftMarginLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multilabel_soft_margin_loss(i, t.type_as(i), reduction='none')),
- cpp_function_call='''F::multilabel_soft_margin_loss(
- i, t.to(i.options()), F::MultilabelSoftMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- (-(t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log())).sum(dim=1) / i.size(1),
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multilabelsoftmarginloss_weights_no_reduce_test():
- t = torch.rand(5, 10).mul(2).floor()
- weights = torch.rand(10)
- return dict(
- fullname='MultiLabelSoftMarginLoss_weights_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multilabel_soft_margin_loss(i, t.type_as(i),
- weight=weights.type_as(i), reduction='none')),
- cpp_function_call='''F::multilabel_soft_margin_loss(
- i, t.to(i.options()),
- F::MultilabelSoftMarginLossFuncOptions().weight(weights.to(i.options())).reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
- reference_fn=lambda i, *_:
- (-(t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log()) * weights).sum(dim=1) / i.size(1),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_no_reduce_test():
- t = torch.rand(5).mul(8).floor().long()
- return dict(
- fullname='MultiMarginLoss_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultiMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_1d_no_reduce_test():
- t = torch.rand(1).mul(8).floor().long()
- return dict(
- fullname='MultiMarginLoss_1d_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultiMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_1d_input_0d_target_no_reduce_test():
- t = torch.rand(()).mul(8).floor().long()
- return dict(
- fullname='multimarginloss_1d_input_0d_target_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultiMarginLossFuncOptions().reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_p_no_reduce_test():
- t = torch.rand(5).mul(8).floor().long()
- return dict(
- fullname='MultiMarginLoss_p_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), p=2, reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong), F::MultiMarginLossFuncOptions().p(2).reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10).clamp_(1e-2, 1 - 1e-2),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), p=2, reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_margin_no_reduce_test():
- t = torch.rand(5).mul(8).floor().long()
- return dict(
- fullname='MultiMarginLoss_margin_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), margin=0.5, reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::MultiMarginLossFuncOptions().margin(0.5).reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(),
- margin=0.5, reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def multimarginloss_weights_no_reduce_test():
- t = torch.rand(5).mul(8).floor().long()
- weights = torch.rand(10, dtype=torch.double)
- return dict(
- fullname='MultiMarginLoss_weights_no_reduce',
- constructor=wrap_functional(
- lambda i: F.multi_margin_loss(i, t.type_as(i).long(), weight=weights.type_as(i),
- reduction='none')),
- cpp_function_call='''F::multi_margin_loss(
- i, t.to(i.options()).to(torch::kLong),
- F::MultiMarginLossFuncOptions().weight(weights.to(i.options())).reduction(torch::kNone))''',
- input_fn=lambda: torch.randn(5, 10),
- cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
- reference_fn=lambda i, *_:
- loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(),
- weight=weights, reduction='none'),
- check_sum_reduction=True,
- check_gradgrad=False,
- pickle=False,
- default_dtype=torch.double)
- def single_batch_reference_fn(input, parameters, module):
- """Reference function for modules supporting no batch dimensions.
- The module is passed the input and target in batched form with a single item.
- The output is squeezed to compare with the no-batch input.
- """
- def unsqueeze_inp(inp):
- if isinstance(inp, (list, tuple)):
- return [t.unsqueeze(0) for t in inp]
- return inp.unsqueeze(0)
- single_batch_input = unsqueeze_inp(input)
- single_batch_input = [single_batch_input] if isinstance(single_batch_input, torch.Tensor) else single_batch_input
- with freeze_rng_state():
- return module(*single_batch_input).squeeze(0)
- new_module_tests = [
- poissonnllloss_no_reduce_test(),
- bceloss_no_reduce_test(),
- bceloss_weights_no_reduce_test(),
- bce_with_logistic_legacy_enum_test(),
- bce_with_logistic_no_reduce_test(),
- bceloss_no_reduce_scalar_test(),
- bceloss_weights_no_reduce_scalar_test(),
- bce_with_logistic_no_reduce_scalar_test(),
- kldivloss_with_target_no_reduce_test(),
- kldivloss_no_reduce_test(),
- kldivloss_no_reduce_scalar_test(),
- kldivloss_with_log_target_no_reduce_test(),
- kldivloss_no_reduce_log_target_test(),
- kldivloss_no_reduce_scalar_log_target_test(),
- l1loss_no_reduce_test(),
- l1loss_no_reduce_complex_test(),
- l1loss_no_reduce_scalar_test(),
- mseloss_no_reduce_test(),
- mseloss_no_reduce_scalar_test(),
- nllloss_no_reduce_test(),
- nllloss_no_reduce_ignore_index_test(),
- nllloss_no_reduce_weights_test(),
- nllloss_no_reduce_weights_ignore_index_test(),
- nllloss_no_reduce_weights_ignore_index_neg_test(),
- nllloss2d_no_reduce_test(),
- nllloss2d_no_reduce_weights_test(),
- nllloss2d_no_reduce_ignore_index_test(),
- nlllossNd_no_reduce_test(),
- nlllossNd_no_reduce_weights_test(),
- nlllossNd_no_reduce_ignore_index_test(),
- smoothl1loss_no_reduce_test(),
- smoothl1loss_no_reduce_scalar_test(),
- smoothl1loss_beta_test(),
- smoothl1loss_zero_beta_test(),
- huberloss_delta_test(),
- multilabelmarginloss_0d_no_reduce_test(),
- multilabelmarginloss_1d_no_reduce_test(),
- multilabelmarginloss_index_neg_test(),
- multilabelmarginloss_no_reduce_test(),
- hingeembeddingloss_no_reduce_test(),
- hingeembeddingloss_margin_no_reduce_test(),
- softmarginloss_no_reduce_test(),
- multilabelsoftmarginloss_no_reduce_test(),
- multilabelsoftmarginloss_weights_no_reduce_test(),
- multimarginloss_no_reduce_test(),
- multimarginloss_1d_no_reduce_test(),
- multimarginloss_1d_input_0d_target_no_reduce_test(),
- multimarginloss_p_no_reduce_test(),
- multimarginloss_margin_no_reduce_test(),
- multimarginloss_weights_no_reduce_test(),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 5, 3),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3)',
- input_size=(2, 4, 10),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 5, 3, 2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).stride(2)',
- input_size=(2, 4, 10),
- cudnn=True,
- desc='stride',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 5, 3, 1, 1),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).stride(1).padding(1)',
- input_size=(2, 4, 10),
- cudnn=True,
- desc='pad1',
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 5, 5, 1, 2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 5).stride(1).padding(2)',
- input_size=(2, 4, 10),
- cudnn=True,
- desc='pad2',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 4, 3, 1, 1),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 4, 3).stride(1).padding(1)',
- input_size=(1, 4, 1),
- cudnn=True,
- desc='pad1size1',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 4, 5, 1, 2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 4, 5).stride(1).padding(2)',
- input_size=(1, 4, 1),
- cudnn=True,
- desc='pad2size1',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv1d',
- constructor_args=(4, 5, 3),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3)',
- input_size=(0, 4, 10),
- cudnn=True,
- desc='zero_batch',
- with_tf32=True,
- tf32_precision=0.005,
- ),
- dict(
- fullname='Conv1d_dilated',
- constructor=lambda: nn.Conv1d(4, 5, kernel_size=3, dilation=2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).dilation(2)',
- input_size=(2, 4, 10),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv1d_groups',
- constructor=lambda: nn.Conv1d(4, 6, kernel_size=3, groups=2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 6, 3).groups(2)',
- input_size=(2, 4, 6),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv1d_pad_valid',
- constructor=lambda: nn.Conv1d(4, 5, 3, padding="valid"),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).padding(torch::kValid)',
- input_size=(2, 4, 10),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv1d_pad_same',
- constructor=lambda: nn.Conv1d(4, 5, 3, padding="same"),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).padding(torch::kSame)',
- input_size=(2, 4, 10),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv1d_pad_same2',
- constructor=lambda: nn.Conv1d(4, 5, 4, padding="same"),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 4).padding(torch::kSame)',
- input_size=(2, 4, 10),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv1d_pad_same_dilated',
- constructor=lambda: nn.Conv1d(4, 5, 4, padding="same", dilation=2),
- cpp_constructor_args='torch::nn::Conv1dOptions(4, 5, 3).padding(torch::kSame).dilation(2)',
- input_size=(2, 4, 10),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='ConvTranspose1d',
- constructor=lambda: nn.ConvTranspose1d(3, 4, kernel_size=3, stride=(3,), padding=1, output_padding=(1,)),
- cpp_constructor_args='torch::nn::ConvTranspose1dOptions(3, 4, 3).stride(3).padding(1).output_padding(1)',
- cudnn=True,
- input_size=(1, 3, 7),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose1d',
- constructor_args=(3, 4, 3, 2, 1, 1, 1, False),
- cpp_constructor_args='''torch::nn::ConvTranspose1dOptions(3, 4, 3)
- .stride(2).padding(1).output_padding(1).groups(1).bias(false)''',
- input_size=(1, 3, 6),
- cudnn=True,
- desc='no_bias',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose1d',
- constructor_args=(3, 4, 3, 2, 1, 1, 1, True, 2),
- cpp_constructor_args='''torch::nn::ConvTranspose1dOptions(3, 4, 3)
- .stride(2).padding(1).output_padding(1).groups(1).bias(true).dilation(2)''',
- input_size=(1, 3, 6),
- cudnn=True,
- desc='dilated',
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='ConvTranspose1d_groups',
- constructor=lambda: nn.ConvTranspose1d(4, 6, 3, stride=(3,), padding=1, output_padding=(1,), groups=2),
- cpp_constructor_args='''torch::nn::ConvTranspose1dOptions(4, 6, 3)
- .stride(3).padding(1).output_padding(1).groups(2)''',
- cudnn=True,
- input_size=(2, 4, 7),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 4, (3, 2)),
- cpp_constructor_args='torch::nn::Conv2dOptions(3, 4, {3, 2})',
- input_size=(2, 3, 7, 5),
- cudnn=True,
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 4, (3, 3), (2, 2)),
- cpp_constructor_args='torch::nn::Conv2dOptions(3, 4, {3, 3}).stride({2, 2})',
- input_size=(2, 3, 6, 6),
- cudnn=True,
- desc='strided',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 4, (3, 3), (2, 2), (1, 1)),
- cpp_constructor_args='torch::nn::Conv2dOptions(3, 4, {3, 3}).stride({2, 2}).padding({1, 1})',
- input_size=(2, 3, 6, 6),
- cudnn=True,
- desc='padding',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 2, (3, 3), (2, 2), (1, 1), (2, 2)),
- cpp_constructor_args='torch::nn::Conv2dOptions(3, 2, {3, 3}).stride({2, 2}).padding({1, 1}).dilation({2, 2})',
- input_size=(2, 3, 8, 8),
- cudnn=True,
- desc='dilated',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 4, (3, 2), 1, 0, 1, 1, False),
- cpp_constructor_args='''torch::nn::Conv2dOptions(3, 4, {3, 2})
- .stride(1).padding(0).dilation(1).groups(1).bias(false)''',
- input_size=(2, 3, 6, 5),
- cudnn=True,
- desc='no_bias',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.015,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv2d',
- constructor_args=(3, 4, (3, 2)),
- cpp_constructor_args='torch::nn::Conv2dOptions(3, 4, {3, 2})',
- input_size=(0, 3, 7, 5),
- cudnn=True,
- desc='zero_batch',
- check_with_long_tensor=True,
- with_tf32=True,
- ),
- dict(
- fullname='Conv2d_groups',
- constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 6, {3, 2}).groups(2)',
- input_size=(2, 4, 6, 5),
- cudnn=True,
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.015,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_groups_thnn',
- constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 6, {3, 2}).groups(2)',
- input_size=(2, 4, 6, 5),
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.015,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_pad_valid',
- constructor=lambda: nn.Conv2d(2, 4, (3, 4), padding="valid"),
- cpp_constructor_args='torch::nn::Conv2dOptions(2, 4, {3, 4}).padding(torch::kValid)',
- input_size=(2, 2, 6, 5),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_pad_same',
- constructor=lambda: nn.Conv2d(2, 4, (3, 4), padding="same"),
- cpp_constructor_args='torch::nn::Conv2dOptions(2, 4, {3, 4}).padding(torch::kSame)',
- input_size=(2, 2, 6, 5),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_pad_same_dilated',
- constructor=lambda: nn.Conv2d(2, 4, (3, 4), padding="same", dilation=2),
- cpp_constructor_args='torch::nn::Conv2dOptions(2, 4, {3, 4}).padding(torch::kSame).dilation(2)',
- input_size=(2, 2, 6, 5),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose2d',
- constructor_args=(3, 4, 3, (3, 2), 1, (1, 1)),
- cpp_constructor_args='''torch::nn::ConvTranspose2dOptions(3, 4, 3)
- .stride({3, 2}).padding(1).output_padding({1, 1})''',
- cudnn=True,
- input_size=(1, 3, 7, 6),
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose2d',
- constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False, (2, 2)),
- cpp_constructor_args='''torch::nn::ConvTranspose2dOptions(3, 4, 3)
- .stride({2, 3})
- .padding(1)
- .output_padding({1, 1})
- .groups(1)
- .bias(false)
- .dilation({2, 2})''',
- input_size=(1, 3, 6, 7),
- cudnn=True,
- desc='dilated',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose2d',
- constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False),
- cpp_constructor_args='''torch::nn::ConvTranspose2dOptions(3, 4, 3)
- .stride({2, 3}).padding(1).output_padding({1, 1}).groups(1).bias(false)''',
- input_size=(1, 3, 6, 7),
- cudnn=True,
- desc='no_bias',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- fullname='ConvTranspose2d_groups',
- constructor=lambda: nn.ConvTranspose2d(2, 4, (2, 3), groups=2),
- cpp_constructor_args='torch::nn::ConvTranspose2dOptions(2, 4, {2, 3}).groups(2)',
- input_size=(1, 2, 4, 5),
- cudnn=True,
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.01,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_depthwise',
- constructor=lambda: nn.Conv2d(4, 4, (3, 3), groups=4),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 4, {3, 3}).groups(4)',
- input_size=(2, 4, 6, 6),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_depthwise_with_multiplier',
- constructor=lambda: nn.Conv2d(4, 8, (3, 3), groups=4),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 8, {3, 3}).groups(4)',
- input_size=(2, 4, 6, 6),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_depthwise_strided',
- constructor=lambda: nn.Conv2d(4, 4, (3, 3), stride=(2, 2), groups=4),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 4, {3, 3}).stride({2, 2}).groups(4)',
- input_size=(2, 4, 6, 6),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_depthwise_padded',
- constructor=lambda: nn.Conv2d(4, 4, (3, 3), padding=(1, 1), groups=4),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 4, {3, 3}).padding({1, 1}).groups(4)',
- input_size=(2, 4, 6, 6),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv2d_depthwise_dilated',
- constructor=lambda: nn.Conv2d(4, 4, (2, 2), dilation=(2, 2), groups=4),
- cpp_constructor_args='torch::nn::Conv2dOptions(4, 4, {2, 2}).dilation({2, 2}).groups(4)',
- input_size=(2, 4, 5, 5),
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(2, 3, (2, 3, 2)),
- cpp_constructor_args='torch::nn::Conv3dOptions(2, 3, {2, 3, 2})',
- input_size=(1, 2, 4, 5, 4),
- cudnn=True,
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(2, 3, (2, 3, 4), 1, 0, 1, 1, False),
- cpp_constructor_args='''torch::nn::Conv3dOptions(2, 3, {2, 3, 4})
- .stride(1).padding(0).dilation(1).groups(1).bias(false)''',
- input_size=(1, 2, 3, 4, 5),
- cudnn=True,
- desc='no_bias',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(2, 3, (1, 1, 1), 1, 0, 1, 1, False),
- cpp_constructor_args='''torch::nn::Conv3dOptions(2, 3, {2, 3, 4})
- .stride(1).padding(0).dilation(1).groups(1).bias(false)''',
- input_size=(1, 2, 3, 4, 5),
- cudnn=True,
- desc='1x1x1_no_bias',
- check_with_long_tensor=False,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(3, 4, 2, 2),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, 2).stride(2)',
- input_size=(2, 3, 5, 5, 5),
- cudnn=True,
- desc='stride',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(3, 4, 2, 2, 1),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, 2).stride(2).padding(1)',
- input_size=(2, 3, 5, 5, 5),
- cudnn=True,
- desc='stride_padding',
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Conv3d',
- constructor_args=(3, 4, (2, 3, 4)),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, {2, 3, 4})',
- input_size=(0, 3, 3, 4, 5),
- cudnn=True,
- check_with_long_tensor=True,
- desc='zero_batch',
- with_tf32=True,
- ),
- dict(
- fullname='Conv3d_groups',
- constructor=lambda: nn.Conv3d(2, 4, kernel_size=3, groups=2),
- cpp_constructor_args='torch::nn::Conv3dOptions(2, 4, 3).groups(2)',
- input_size=(1, 2, 4, 5, 4),
- cudnn=True,
- check_with_long_tensor=True,
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv3d_dilated',
- constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, 2).dilation(2)',
- input_size=(2, 3, 5, 5, 5),
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv3d_dilated_strided',
- constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2, stride=2),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, 2).dilation(2).stride(2)',
- input_size=(2, 3, 5, 5, 5),
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv3d_pad_valid',
- constructor=lambda: nn.Conv3d(3, 4, (2, 3, 4), padding="valid"),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, {2, 3, 4}).padding(torch::kValid)',
- input_size=(2, 3, 6, 5, 4),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv3d_pad_same',
- constructor=lambda: nn.Conv3d(3, 4, (2, 3, 4), padding="same"),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, {2, 3, 4}).padding(torch::kSame)',
- input_size=(2, 3, 6, 5, 4),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Conv3d_pad_same_dilated',
- constructor=lambda: nn.Conv3d(3, 4, (2, 3, 4), padding="same", dilation=2),
- cpp_constructor_args='torch::nn::Conv3dOptions(3, 4, {2, 3, 4}).padding(torch::kSame).dilation(2)',
- input_size=(2, 3, 6, 5, 4),
- cudnn=True,
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose3d',
- constructor_args=(2, 3, (2, 3, 2)),
- cpp_constructor_args='torch::nn::ConvTranspose3dOptions(2, 3, {2, 3, 2})',
- cudnn=True,
- input_size=(1, 2, 4, 5, 4),
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ConvTranspose3d',
- constructor_args=(2, 3, (2, 3, 2), 1, 0, 0, 1, True, (2, 2, 2)),
- cpp_constructor_args='''torch::nn::ConvTranspose3dOptions(2, 3, {2, 3, 2})
- .stride(1).padding(0).output_padding(0).groups(1).bias(true).dilation({2, 2, 2})''',
- cudnn=True,
- input_size=(1, 2, 4, 5, 4),
- desc='dilated',
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='ReplicationPad3d',
- constructor_args=((1, 2, 3, 3, 2, 1),),
- cpp_constructor_args='torch::nn::ReplicationPad3dOptions({1, 2, 3, 3, 2, 1})',
- input_size=(2, 3, 2, 2, 2),
- default_dtype=torch.double,
- ),
- dict(
- module_name='ReplicationPad3d',
- constructor_args=((1, 2, 3, 3, 2, 1),),
- cpp_constructor_args='torch::nn::ReplicationPad3dOptions({1, 2, 3, 3, 2, 1})',
- input_size=(3, 2, 2, 2),
- reference_fn=single_batch_reference_fn,
- desc='no_batch_dim',
- default_dtype=torch.double,
- ),
- dict(
- module_name='ReplicationPad3d',
- constructor_args=((1, 2, 3, 3, 2, 1),),
- cpp_constructor_args='torch::nn::ReplicationPad3dOptions({1, 2, 3, 3, 2, 1})',
- input_fn=lambda: torch.rand(2, 3, 2, 2, 2, dtype=torch.complex128, requires_grad=True),
- skip_half=True,
- desc='complex'
- ),
- dict(
- module_name='Embedding',
- constructor_args=(4, 3),
- cpp_constructor_args='torch::nn::EmbeddingOptions(4, 3)',
- input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4),
- check_gradgrad=False,
- default_dtype=torch.double,
- decorator=skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/117971")
- ),
- dict(
- module_name='Embedding',
- constructor_args=(4, 3),
- cpp_constructor_args='torch::nn::EmbeddingOptions(4, 3)',
- input_fn=lambda: torch.empty(1, 512, dtype=torch.long).random_(4).expand(7, 512),
- check_gradgrad=False,
- desc='discontiguous',
- default_dtype=torch.double,
- decorator=skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/117971")
- ),
- dict(
- module_name='EmbeddingBag',
- constructor_args=(4, 3),
- cpp_constructor_args='torch::nn::EmbeddingBagOptions(4, 3)',
- input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4),
- check_gradgrad=False,
- desc='mean',
- default_dtype=torch.double,
- ),
- dict(
- module_name='EmbeddingBag',
- constructor_args=(4, 3),
- cpp_constructor_args='torch::nn::EmbeddingBagOptions(4, 3)',
- input_fn=lambda: torch.empty(1, 512, dtype=torch.long).random_(4).expand(7, 512),
- check_gradgrad=False,
- desc='discontiguous',
- default_dtype=torch.double,
- ),
- dict(
- module_name='EmbeddingBag',
- constructor_args=(4, 3, None, 2., False, 'sum'),
- cpp_constructor_args='''torch::nn::EmbeddingBagOptions(4, 3)
- .max_norm(c10::nullopt).norm_type(2.).scale_grad_by_freq(false).mode(torch::kSum)''',
- input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4),
- check_gradgrad=False,
- desc='sum',
- default_dtype=torch.double,
- ),
- dict(
- module_name='EmbeddingBag',
- constructor_args=(4, 3, None, 2., False, 'max'),
- cpp_constructor_args='''torch::nn::EmbeddingBagOptions(4, 3)
- .max_norm(c10::nullopt).norm_type(2.).scale_grad_by_freq(false).mode(torch::kMax)''',
- input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4),
- check_gradgrad=False,
- desc='max',
- default_dtype=torch.double,
- ),
- dict(
- fullname='EmbeddingBag_mean_padding_idx',
- constructor=lambda: nn.EmbeddingBag(4, 3, padding_idx=1),
- cpp_constructor_args='torch::nn::EmbeddingBagOptions(4, 3).padding_idx(1)',
- input_fn=lambda: torch.stack([torch.randperm(3), torch.randperm(3)]),
- check_gradgrad=False,
- default_dtype=torch.double,
- ),
- dict(
- fullname='EmbeddingBag_sum_padding_idx',
- constructor=lambda: nn.EmbeddingBag(4, 3, None, 2., False, 'sum', padding_idx=1),
- cpp_constructor_args='''torch::nn::EmbeddingBagOptions(4, 3)
- .max_norm(c10::nullopt).norm_type(2.).scale_grad_by_freq(false).mode(torch::kSum).padding_idx(1)''',
- input_fn=lambda: torch.stack([torch.randperm(3), torch.randperm(3)]),
- check_gradgrad=False,
- default_dtype=torch.double,
- ),
- dict(
- fullname='EmbeddingBag_max_padding_idx',
- constructor=lambda: nn.EmbeddingBag(4, 3, None, 2., False, 'max', padding_idx=1),
- cpp_constructor_args='''torch::nn::EmbeddingBagOptions(4, 3)
- .max_norm(c10::nullopt).norm_type(2.).scale_grad_by_freq(false).mode(torch::kMax).padding_idx(1)''',
- input_fn=lambda: torch.stack([torch.randperm(3), torch.randperm(3)]),
- check_gradgrad=False,
- default_dtype=torch.double,
- ),
- dict(
- fullname='EmbeddingBag_sparse',
- constructor=lambda: nn.EmbeddingBag(4, 3, sparse=True, dtype=torch.double),
- cpp_constructor_args='torch::nn::EmbeddingBagOptions(4, 3).sparse(true)._weight(torch::rand({4, 3}).to(torch::kFloat64))',
- input_fn=lambda: torch.randperm(2).repeat(1, 2),
- check_gradgrad=False,
- has_sparse_gradients=True,
- ),
- dict(
- constructor=lambda: nn.Embedding(4, 3, dtype=torch.double, sparse=True),
- cpp_constructor_args='torch::nn::EmbeddingOptions(4, 3).sparse(true)._weight(torch::rand({4, 3}).to(torch::kFloat64))',
- input_fn=lambda: torch.randperm(2).repeat(1, 2),
- fullname='Embedding_sparse',
- check_gradgrad=False,
- has_sparse_gradients=True,
- ),
- dict(
- module_name='PixelShuffle',
- constructor_args=(3,),
- cpp_constructor_args='torch::nn::PixelShuffleOptions(3)',
- input_size=(1, 9, 4, 4),
- default_dtype=torch.double,
- ),
- dict(
- module_name='PixelUnshuffle',
- constructor_args=(3,),
- cpp_constructor_args='torch::nn::PixelUnshuffleOptions(3)',
- input_size=(1, 1, 12, 12),
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12})).scale_factor(c10::nullopt).mode(torch::kNearest)''',
- input_size=(1, 2, 4),
- fullname='interpolate_nearest_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12})).scale_factor(c10::nullopt).mode(torch::kNearest)''',
- input_size=(0, 2, 4),
- fullname='interpolate_nearest_1d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(12, ), scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12})).scale_factor(c10::nullopt).mode(torch::kNearest)''',
- input_size=(1, 2, 3),
- fullname='interpolate_nearest_tuple_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt).scale_factor(std::vector<double>({4.})).mode(torch::kNearest)''',
- input_size=(1, 2, 4),
- fullname='interpolate_nearest_scale_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='linear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kLinear)
- .align_corners(false)''',
- input_size=(1, 2, 4),
- fullname='interpolate_linear_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, ), scale_factor=None, mode='linear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4}))
- .scale_factor(c10::nullopt)
- .mode(torch::kLinear)
- .align_corners(false)''',
- input_size=(1, 2, 3),
- fullname='interpolate_linear_tuple_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='linear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4.}))
- .mode(torch::kLinear)
- .align_corners(false)''',
- input_size=(1, 2, 4),
- fullname='interpolate_linear_scale_1d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='linear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kLinear)
- .align_corners(false)''',
- input_size=(0, 2, 4),
- fullname='interpolate_linear_1d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='linear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kLinear)
- .align_corners(true)''',
- input_size=(1, 2, 4),
- fullname='interpolate_linear_1d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='linear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4.}))
- .mode(torch::kLinear)
- .align_corners(true)''',
- input_size=(1, 2, 4),
- fullname='interpolate_linear_scale_1d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=2, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({2, 2}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(1, 128, 1, 1),
- fullname='interpolate_nearest_2d_launch_configs',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_nearest_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(12, 16), scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 16}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(1, 2, 3, 4),
- fullname='interpolate_nearest_tuple_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4., 4.}))
- .mode(torch::kNearest)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_nearest_scale_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(0, 2, 4, 4),
- fullname='interpolate_nearest_2d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(0, 2, 4, 4),
- fullname='interpolate_bilinear_2d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6), scale_factor=None,
- mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(1, 2, 2, 3),
- fullname='interpolate_bilinear_tuple_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4.,
- mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4., 4.}))
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_scale_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 2.),
- mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 2.}))
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_scale_tuple_shared_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 1.),
- mode='bilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 1.}))
- .mode(torch::kBilinear)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_scale_tuple_skewed_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6), scale_factor=None, mode='bilinear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBilinear)
- .align_corners(true)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_tuple_2d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 1.),
- mode='bilinear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 1.}))
- .mode(torch::kBilinear)
- .align_corners(true)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bilinear_scale_tuple_skewed_2d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(0, 2, 4, 4),
- fullname='interpolate_bicubic_2d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6), scale_factor=None,
- mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(1, 2, 2, 3),
- fullname='interpolate_bicubic_tuple_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4., 4.}))
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_scale_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 2.),
- mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 2.}))
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_scale_tuple_shared_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 1.),
- mode='bicubic', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 1.}))
- .mode(torch::kBicubic)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_scale_tuple_skewed_2d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6), scale_factor=None, mode='bicubic', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kBicubic)
- .align_corners(true)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_tuple_2d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=(2., 1.),
- mode='bicubic', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({2., 1.}))
- .mode(torch::kBicubic)
- .align_corners(true)''',
- input_size=(1, 2, 4, 4),
- fullname='interpolate_bicubic_scale_tuple_skewed_2d_align_corners',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(1, 2, 4, 4, 4),
- fullname='interpolate_nearest_3d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(0, 2, 4, 4, 4),
- fullname='interpolate_nearest_3d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(12, 16, 16), scale_factor=None, mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 16, 16}))
- .scale_factor(c10::nullopt)
- .mode(torch::kNearest)''',
- input_size=(1, 2, 3, 4, 4),
- fullname='interpolate_nearest_tuple_3d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=4., mode='nearest'),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({4., 4., 4.}))
- .mode(torch::kNearest)''',
- input_size=(1, 2, 4, 4, 4),
- fullname='interpolate_nearest_scale_3d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='trilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kTrilinear)
- .align_corners(false)''',
- input_size=(1, 2, 4, 4, 4),
- fullname='interpolate_trilinear_3d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=12, scale_factor=None, mode='trilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({12, 12, 12}))
- .scale_factor(c10::nullopt)
- .mode(torch::kTrilinear)
- .align_corners(false)''',
- input_size=(0, 2, 4, 4, 4),
- fullname='interpolate_trilinear_3d_zero_dim',
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6, 6),
- scale_factor=None, mode='trilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kTrilinear)
- .align_corners(false)''',
- input_size=(1, 2, 2, 3, 3),
- fullname='interpolate_trilinear_tuple_3d',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=3., mode='trilinear', align_corners=False),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({3., 3., 3.}))
- .mode(torch::kTrilinear)
- .align_corners(false)''',
- input_size=(1, 2, 3, 4, 5),
- fullname='interpolate_trilinear_scale_3d',
- # See https://github.com/pytorch/pytorch/issues/5006
- precision=3e-4,
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=(4, 6, 6), scale_factor=None,
- mode='trilinear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(std::vector<int64_t>({4, 6, 6}))
- .scale_factor(c10::nullopt)
- .mode(torch::kTrilinear)
- .align_corners(true)''',
- input_size=(1, 2, 2, 3, 3),
- fullname='interpolate_trilinear_tuple_3d_align_corners',
- pickle=False,
- default_dtype=torch.double
- ),
- dict(
- constructor=wrap_functional(F.interpolate, size=None, scale_factor=3., mode='trilinear', align_corners=True),
- cpp_options_args='''F::InterpolateFuncOptions()
- .size(c10::nullopt)
- .scale_factor(std::vector<double>({3., 3., 3.}))
- .mode(torch::kTrilinear)
- .align_corners(true)''',
- input_size=(1, 2, 3, 4, 4),
- fullname='interpolate_trilinear_scale_3d_align_corners',
- # See https://github.com/pytorch/pytorch/issues/5006
- precision=3e-4,
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=-1),
- cpp_options_args='F::SoftmaxFuncOptions(-1)',
- input_size=(2, 128), # trigger the last-dim algo in CUDA
- fullname='softmax_lastdim',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=1, dtype=torch.float64),
- cpp_options_args='F::SoftmaxFuncOptions(1).dtype(torch::kFloat64)',
- input_size=(2, 128),
- fullname='softmax_lastdim_dtype',
- pickle=False,
- test_cuda=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=1),
- cpp_options_args='F::SoftmaxFuncOptions(1)',
- input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo
- fullname='softmax_spatial_special',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=1),
- cpp_options_args='F::SoftmaxFuncOptions(1)',
- input_size=(2, 2, 4, 4), # regular spatial algorithm
- fullname='softmax_spatial',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=1, dtype=torch.float64),
- cpp_options_args='F::SoftmaxFuncOptions(1).dtype(torch::kFloat64)',
- input_size=(2, 2, 4, 4), # regular spatial algorithm
- fullname='softmax_spatial_dtype',
- pickle=False,
- test_cuda=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=0),
- cpp_options_args='F::SoftmaxFuncOptions(0)',
- input_size=(2, 3, 4, 5),
- fullname='softmax_functional_dim0',
- test_cuda=False,
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=3),
- cpp_options_args='F::SoftmaxFuncOptions(3)',
- input_size=(2, 3, 4, 5),
- fullname='softmax_functional_dim3',
- test_cuda=False,
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.softmax, dim=-1),
- cpp_options_args='F::SoftmaxFuncOptions(-1)',
- input_size=(),
- fullname='softmax_functional_scalar',
- test_cuda=False,
- pickle=False,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=-1),
- cpp_options_args='F::LogSoftmaxFuncOptions(-1)',
- input_size=(2, 128), # trigger the last-dim algo in CUDA
- fullname='log_softmax_lastdim',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=1),
- cpp_options_args='F::LogSoftmaxFuncOptions(1)',
- input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo
- fullname='log_softmax_spatial_special',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=1),
- cpp_options_args='F::LogSoftmaxFuncOptions(1)',
- input_size=(2, 2, 4, 4), # regular spatial algorithm
- fullname='log_softmax_spatial',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=0),
- cpp_options_args='F::LogSoftmaxFuncOptions(0)',
- input_size=(2, 3, 4, 5),
- fullname='log_softmax_dim0',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=3),
- cpp_options_args='F::LogSoftmaxFuncOptions(3)',
- input_size=(2, 3, 4, 5),
- fullname='log_softmax_dim3',
- pickle=False,
- default_dtype=torch.double,
- ),
- dict(
- constructor=wrap_functional(F.log_softmax, dim=0),
- cpp_options_args='F::LogSoftmaxFuncOptions(0)',
- input_size=(),
- fullname='log_softmax_scalar',
- pickle=False,
- ),
- dict(
- fullname='Unfold',
- constructor=lambda: nn.Unfold((2, 2), (1, 1), (0, 0), (1, 1)),
- cpp_constructor_args='torch::nn::UnfoldOptions({2, 2}).dilation({1, 1}).padding({0, 0}).stride({1, 1})',
- input_size=(2, 4, 3, 3),
- check_gradgrad=False,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Fold',
- constructor=lambda: nn.Fold((3, 3), (2, 2), (1, 1), (0, 0), (1, 1)),
- cpp_constructor_args='torch::nn::FoldOptions({3, 3}, {2, 2}).dilation({1, 1}).padding({0, 0}).stride({1, 1})',
- input_size=(2, 16, 4),
- check_gradgrad=False,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Fold_no_batch_dim_input',
- constructor=lambda: nn.Fold((3, 3), (2, 2), (1, 1), (0, 0), (1, 1)),
- cpp_constructor_args='torch::nn::FoldOptions({3, 3}, {2, 2}).dilation({1, 1}).padding({0, 0}).stride({1, 1})',
- input_size=(16, 4),
- check_gradgrad=False,
- ref=single_batch_reference_fn,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Unfold_int_input',
- constructor=lambda: nn.Unfold(2, 1, 0, 1),
- cpp_constructor_args='torch::nn::UnfoldOptions(2).dilation(1).padding(0).stride(1)',
- input_size=(2, 4, 3, 3),
- check_gradgrad=False,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Fold_int_input',
- constructor=lambda: nn.Fold(3, 2, 1, 0, 1),
- cpp_constructor_args='torch::nn::FoldOptions(3, 2).dilation(1).padding(0).stride(1)',
- input_size=(2, 16, 4),
- check_gradgrad=False,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- fullname='Fold_no_batch_dim_int_input',
- constructor=lambda: nn.Fold(3, 2, 1, 0, 1),
- cpp_constructor_args='torch::nn::FoldOptions(3, 2).dilation(1).padding(0).stride(1)',
- input_size=(16, 4),
- ref=single_batch_reference_fn,
- check_gradgrad=False,
- test_cuda=True,
- default_dtype=torch.double,
- ),
- dict(
- module_name='RReLU',
- constructor_args=(0.1, 0.9),
- cpp_constructor_args='torch::nn::RReLUOptions().lower(0.1).upper(0.9)',
- input_size=(),
- desc='with_up_down_scalar',
- test_cuda=False,
- default_dtype=torch.double,
- ),
- dict(
- module_name='PairwiseDistance',
- input_fn=lambda: (torch.randn(10, 8), torch.randn(10, 8)),
- default_dtype=torch.double,
- ),
- dict(
- module_name='PairwiseDistance',
- input_fn=lambda: (torch.randn(10, 1), torch.randn(10, 8)),
- desc='broadcast_lhs',
- default_dtype=torch.double,
- ),
- dict(
- module_name='PairwiseDistance',
- input_fn=lambda: (torch.randn(10, 8), torch.randn(1, 8)),
- desc='broadcast_rhs',
- default_dtype=torch.double,
- ),
- dict(
- module_name='PairwiseDistance',
- constructor_args=(1.5, 1e-05, True),
- cpp_constructor_args='torch::nn::PairwiseDistanceOptions().p(1.5).eps(1e-05).keepdim(true)',
- input_fn=lambda: (torch.randn(10, 8), torch.randn(10, 8)),
- desc='with_non_default_args',
- default_dtype=torch.double,
- ),
- dict(
- module_name='PairwiseDistance',
- input_fn=lambda: (torch.randn(8), torch.randn(8)),
- reference_fn=single_batch_reference_fn,
- desc='no_batch_dim',
- default_dtype=torch.double,
- ),
- dict(
- module_name='TransformerEncoderLayer',
- constructor_args=(4, 2, 16, 0.0),
- cpp_constructor_args='''torch::nn::TransformerEncoderLayerOptions(4, 2)
- .dim_feedforward(16)
- .dropout(0.0)''',
- input_size=(2, 3, 4),
- desc='relu_activation',
- with_tf32=True,
- tf32_precision=0.1,
- # TODO(#50743): figure out the error
- # RuntimeError: The size of tensor a (6) must match the size of tensor b (4)
- # at non-singleton dimension 2
- check_batched_grad=False,
- check_gradgrad=False,
- default_dtype=torch.double,
- ),
- dict(
- module_name='TransformerEncoderLayer',
- constructor_args=(4, 2, 8, 0.0, F.gelu),
- cpp_constructor_args='''torch::nn::TransformerEncoderLayerOptions(4, 2)
- .dim_feedforward(8)
- .dropout(0.0)
- .activation(torch::kGELU)''',
- input_size=(2, 3, 4),
- check_gradgrad=False,
- desc='gelu_activation',
- with_tf32=True,
- tf32_precision=0.08 if SM90OrLater else 0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='TransformerDecoderLayer',
- constructor_args=(4, 2, 8, 0.0),
- cpp_constructor_args='''torch::nn::TransformerDecoderLayerOptions(4, 2)
- .dim_feedforward(8)
- .dropout(0.0)''',
- input_fn=lambda: (torch.rand(3, 3, 4), torch.rand(2, 3, 4)),
- check_gradgrad=False,
- desc='relu_activation',
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='TransformerDecoderLayer',
- constructor_args=(4, 2, 8, 0.0, F.gelu),
- cpp_constructor_args='''torch::nn::TransformerDecoderLayerOptions(4, 2)
- .dim_feedforward(8)
- .dropout(0.0)
- .activation(torch::kGELU)''',
- input_fn=lambda: (torch.rand(3, 3, 4), torch.rand(2, 3, 4)),
- check_gradgrad=False,
- desc='gelu_activation',
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Transformer',
- constructor_args=(4, 2, 2, 2, 8, 0.0, F.relu),
- cpp_constructor_args='''torch::nn::TransformerOptions()
- .d_model(4)
- .nhead(2)
- .num_encoder_layers(2)
- .num_decoder_layers(2)
- .dim_feedforward(8)
- .dropout(0.0)
- .activation(torch::kReLU)''',
- input_fn=lambda: (torch.rand(3, 3, 4), torch.rand(2, 3, 4), torch.rand(3, 3)),
- check_gradgrad=False,
- desc='multilayer_coder',
- with_tf32=True,
- tf32_precision=0.05 if SM90OrLater else 0.03,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Linear',
- constructor_args=(3, 5),
- cpp_constructor_args='torch::nn::LinearOptions(3, 5)',
- input_fn=lambda: torch.rand(3),
- reference_fn=lambda i, p, _: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1],
- desc="no_batch_dim",
- with_tf32=True,
- tf32_precision=0.005,
- default_dtype=torch.double,
- ),
- dict(
- module_name='Flatten',
- cpp_constructor_args='torch::nn::FlattenOptions().start_dim(-3).end_dim(-1)',
- constructor_args=(-3, -1),
- input_size=(3, 4, 5),
- reference_fn=single_batch_reference_fn,
- desc="no_batch_dim",
- default_dtype=torch.double,
- ),
- dict(
- module_name='Unflatten',
- cpp_constructor_args='torch::nn::UnflattenOptions(-2, {2, 2})',
- constructor_args=(-2, torch.Size([2, 2])),
- input_size=(3, 4, 5),
- reference_fn=single_batch_reference_fn,
- desc="no_batch_dim",
- default_dtype=torch.double,
- ),
- dict(
- module_name='LayerNorm',
- constructor_args=([56, 56, 56], 1e-5, False),
- cpp_constructor_args='torch::nn::LayerNormOptions({56, 56, 56}).eps(1e-5).elementwise_affine(false)',
- input_size=(4, 56, 56, 56),
- cudnn=True,
- check_eval=True,
- gradcheck_fast_mode=True,
- check_half=True,
- desc='3d_no_affine_large_feature',
- ),
- ]
- # add conv padding mode tests:
- for padding_mode, cpp_padding_mode in zip(
- ['reflect', 'circular', 'replicate', 'zeros'],
- ['torch::kReflect', 'torch::kCircular', 'torch::kReplicate', 'torch::kZeros']):
- # conv signature:
- # in_channels, out_channels, kernel_size, stride=1,
- # padding=0, dilation=1, groups=1,
- # bias=True, padding_mode='zeros'
- for d in (1, 2, 3):
- if d == 3 and padding_mode == 'reflect':
- # FIXME: remove after implementing reflection pad 3d
- # https://github.com/pytorch/pytorch/issues/27655
- continue
- padding = tuple(range(1, d + 1))
- cpp_padding = '{' + ', '.join(map(str, padding)) + '}'
- input_size = (2, 2) + (4,) * d
- output_size = (2, 3) + tuple(p + 1 for p in padding) # simplified from `(4 + 2 * p - 3) // 2 + 1`
- new_module_tests.append(
- dict(
- module_name=f'Conv{d}d',
- constructor_args=(2, 3, 3, 2, padding, 1, 1, True, padding_mode),
- cpp_constructor_args=f'''torch::nn::Conv{d}dOptions(2, 3, 3)
- .stride(2)
- .padding({cpp_padding})
- .dilation(1)
- .groups(1)
- .bias(true)
- .padding_mode({cpp_padding_mode})''',
- input_size=input_size,
- output_size=output_size,
- cudnn=True,
- desc=f'{padding_mode}_stride2_pad2',
- with_tf32=True,
- tf32_precision=0.05,
- default_dtype=torch.double,
- ),
- )
- # Check that non linear activations work with no batch dimensions
- non_linear_activations_no_batch = [
- 'ELU', 'Hardshrink', 'Hardsigmoid', 'Hardtanh', 'Hardswish', 'LeakyReLU',
- 'LogSigmoid', 'PReLU', 'ReLU', 'ReLU6', 'RReLU', 'SELU', 'CELU', 'GELU', 'GLU',
- 'Sigmoid', 'SiLU', 'Mish', 'Softplus', 'Softshrink', 'Softsign', 'Tanh',
- 'Tanhshrink', 'Threshold'
- ]
- non_linear_activations_extra_info: Dict[str, dict] = {
- 'CELU': {'constructor_args': (2.,), 'default_dtype': torch.double},
- 'Threshold': {'constructor_args': (2., 1.)},
- 'Hardsigmoid': {'check_gradgrad': False, 'check_jit': False, 'default_dtype': torch.double},
- 'Hardswish': {'check_gradgrad': False, 'check_jit': False, 'default_dtype': torch.double},
- # For RRelu, test that compare CPU and GPU results fail because RNG
- # is different between CPU and GPU
- 'RReLU': {'test_cuda': False, 'default_dtype': torch.double},
- 'ELU': {'default_dtype': torch.double},
- 'GELU': {'default_dtype': torch.double},
- 'GLU': {'default_dtype': torch.double},
- 'Hardshrink': {'default_dtype': torch.double},
- 'Hardtanh': {'default_dtype': torch.double},
- 'LeakyReLU': {'default_dtype': torch.double},
- 'LogSigmoid': {'default_dtype': torch.double},
- 'Mish': {'default_dtype': torch.double},
- 'PReLU': {'default_dtype': torch.double},
- 'ReLU6': {'default_dtype': torch.double},
- 'ReLU': {'default_dtype': torch.double},
- 'SELU': {'default_dtype': torch.double},
- 'SiLU': {'default_dtype': torch.double},
- 'Sigmoid': {'default_dtype': torch.double},
- 'Softplus': {'default_dtype': torch.double},
- 'Softshrink': {'default_dtype': torch.double},
- 'Softsign': {'default_dtype': torch.double},
- 'Tanh': {'default_dtype': torch.double},
- 'Tanhshrink': {'default_dtype': torch.double},
- }
- for non_linear_activation in non_linear_activations_no_batch:
- activation_test_info = dict(
- module_name=non_linear_activation,
- input_size=(4,),
- reference_fn=single_batch_reference_fn,
- desc='no_batch_dim',
- test_cpp_api_parity=False,
- )
- extra_info = non_linear_activations_extra_info.get(non_linear_activation, {})
- activation_test_info.update(extra_info)
- new_module_tests.append(activation_test_info)
- def kldivloss_reference(input, target, reduction='mean', log_target=False):
- if log_target:
- result = torch.exp(target) * (target - input)
- else:
- result = target * (target.log() - input)
- if reduction == 'mean':
- return result.mean()
- elif reduction == 'sum':
- return result.sum()
- elif reduction == 'batchmean' and result.dim() != 0:
- return result.sum() / result.size(0)
- return result
- def nlllossNd_reference(input, target, weight=None, ignore_index=-100,
- reduction='mean'):
- assert input.dim() >= 3
- N = input.size(0)
- C = input.size(1)
- out_size = (N,) + input.size()[2:]
- output = torch.zeros(out_size).type_as(input)
- if weight is None:
- weight = torch.ones(C).type_as(input)
- total_weight = 0
- for tup in product(*[range(size) for size in out_size]):
- t_nx = target[tup]
- norm = 0. if ignore_index == t_nx else weight[t_nx].item()
- input_index = list(tup)
- input_index.insert(1, t_nx)
- output[tup] = -input[tuple(input_index)] * norm
- total_weight += norm
- if reduction == 'mean':
- return output.sum() / total_weight
- elif reduction == 'sum':
- return output.sum()
- return output
- def cross_entropy_loss_prob_target_reference(input, target, weight=None, reduction='mean',
- label_smoothing=0.0):
- assert input.dim() >= 2
- input = torch.log_softmax(input, 1)
- C = input.size(1)
- if weight is None:
- weight = torch.ones(C).type_as(input)
- weight = weight.view(1, C, *(1 for _ in input.shape[2:]))
- if label_smoothing > 0.0:
- assert label_smoothing <= 1.0
- target = (target * (1 - label_smoothing) + label_smoothing / C)
- output = -(input * target * weight).sum(dim=1)
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def cross_entropy_loss_indices_target_reference(input, target, weight=None, ignore_index=-100,
- reduction='mean', label_smoothing=0.0):
- log_softmax_input = torch.log_softmax(input, 1)
- nllloss = F.nll_loss(
- log_softmax_input,
- target,
- weight,
- ignore_index=ignore_index,
- reduction=reduction)
- if label_smoothing == 0.0:
- return nllloss
- assert 0.0 < label_smoothing <= 1.0
- input = torch.log_softmax(input, 1)
- C = input.size(1)
- if weight is not None:
- input = input * weight.view(1, C, *(1 for _ in input.shape[2:]))
- smooth_loss = -torch.sum(input, 1)
- ignore_mask = target == ignore_index
- smooth_loss.masked_fill_(ignore_mask, 0.0)
- if reduction == 'mean':
- if weight is not None:
- # TODO: This code can path can be removed if #61309 is resolved
- # loss is normalized by the weights to be consistent with nll_loss_nd
- ret = torch.sum(smooth_loss) / weight.gather(0, target.masked_select(ignore_mask.logical_not()).flatten()).sum()
- else:
- ret = torch.mean(smooth_loss.masked_select(ignore_mask.logical_not()))
- elif reduction == 'sum':
- ret = torch.sum(smooth_loss)
- else:
- ret = smooth_loss
- return (1 - label_smoothing) * nllloss + ret * (label_smoothing / C)
- def cross_entropy_loss_reference(input, target, weight=None, ignore_index=-100, reduction='mean',
- label_smoothing=0.0):
- if input.shape == target.shape:
- return cross_entropy_loss_prob_target_reference(
- input,
- target,
- weight=weight,
- reduction=reduction,
- label_smoothing=label_smoothing)
- else:
- return cross_entropy_loss_indices_target_reference(
- input, target, weight=weight, reduction=reduction,
- ignore_index=ignore_index, label_smoothing=label_smoothing
- )
- def nllloss_reference(input, target, weight=None, ignore_index=-100,
- reduction='mean'):
- def nll_loss_helper(input, target, weight, ignore_index):
- if target == ignore_index:
- return (0, 0)
- norm = 1 if weight is None else weight[target]
- result = -input[target] * norm
- return (result, norm)
- losses_and_weights = [nll_loss_helper(i, t, weight, ignore_index)
- for i, t in zip(input, target)]
- losses, weights = zip(*losses_and_weights)
- losses_tensor = input.new_tensor(losses)
- if reduction == 'mean':
- return sum(losses_tensor) / sum(weights)
- elif reduction == 'sum':
- return sum(losses_tensor)
- else:
- return losses_tensor
- def smoothl1loss_reference(input, target, reduction='mean', beta=1.0):
- abs_diff = (input - target).abs()
- ge_beta_mask = (abs_diff >= beta).type_as(abs_diff)
- lt_beta_mask = (abs_diff < beta).type_as(abs_diff)
- # when beta <= 0 we should just use l1_loss
- if beta == 0:
- output = abs_diff
- else:
- output = ge_beta_mask * (abs_diff - 0.5 * beta) + lt_beta_mask * 0.5 * (abs_diff ** 2) / beta
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def huberloss_reference(input, target, reduction='mean', delta=1.0):
- abs_diff = (input - target).abs()
- ge_delta_mask = (abs_diff >= delta)
- lt_delta_mask = (abs_diff < delta)
- output = ge_delta_mask * delta * (abs_diff - 0.5 * delta) + lt_delta_mask * 0.5 * (abs_diff ** 2)
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def _multilabelmarginloss_reference(input, target):
- targets = []
- for target_index in target:
- if target_index < 0:
- break
- targets.append(target_index)
- sum = 0
- for target_index in targets:
- for i in range(0, len(input)):
- if i not in targets:
- sum += max(0, 1 - input[target_index] + input[i])
- return sum
- def multilabelmarginloss_reference(input, target, reduction='mean'):
- # make everything 2-dimensional
- input_dim = input.dim()
- if input.dim() < 2:
- assert target.dim() < 2
- input = input.unsqueeze(0) if input.dim() == 1 else input.unsqueeze(0).unsqueeze(0)
- target = target.unsqueeze(0) if target.dim() == 1 else target.unsqueeze(0).unsqueeze(0)
- n = input.size(0)
- dim = input.size(1)
- output = input.new(n).zero_()
- for i in range(0, n):
- output[i] = _multilabelmarginloss_reference(input[i], target[i])
- if reduction == 'mean':
- return output.mean() / dim
- elif reduction == 'sum':
- return output.sum() / dim
- elif input_dim < 2:
- # we know we have (1, C) X (1, C) -> (1,), so squeeze will get us
- # back to correct dimensionality
- return output.squeeze() / dim
- else:
- return output / dim
- def hingeembeddingloss_reference(input, target, margin=1.0, reduction='mean'):
- margin_clamp = (margin - input).clamp(min=0).type_as(input)
- output = torch.where(target == 1, input, margin_clamp)
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def softmarginloss_reference(input, target, reduction='mean'):
- output = (1 + (-input * target).exp()).log()
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def _multimarginloss_reference(input, target_idx, p, margin, weight):
- if weight is None:
- weight = input.new(len(input)).fill_(1)
- output = 0
- for i in range(0, len(input)):
- if i != target_idx:
- output += weight[target_idx] * (max(0, (margin - input[target_idx] + input[i])) ** p)
- return output
- def multimarginloss_reference(input, target, p=1, margin=1, weight=None, reduction='mean'):
- if input.dim() < 2:
- input = input.unsqueeze(0) if input.dim() == 1 else input.unsqueeze(0).unsqueeze(0)
- target_dim = target.dim()
- if target.dim() == 0:
- target = target.unsqueeze(0)
- n = input.size(0)
- dim = input.size(1)
- output = input.new(n)
- for x in range(0, n):
- output[x] = _multimarginloss_reference(input[x], target[x], p, margin, weight)
- if reduction == 'mean':
- return output.mean() / dim
- elif reduction == 'sum':
- return output.sum() / dim
- elif target_dim == 0:
- return output.squeeze(0) / dim
- return output / dim
- def cosineembeddingloss_reference(input1, input2, target, margin=0, reduction='mean'):
- def _cos(a, b):
- cos = a.new(a.size(0))
- for i in range(0, a.size(0)):
- cos[i] = (a[i] * b[i]).sum() / ((((a[i] * a[i]).sum() + 1e-12) * ((b[i] * b[i]).sum() + 1e-12)) ** 0.5)
- return cos
- output = torch.where(target == 1, 1 - _cos(input1, input2), (_cos(input1, input2) - margin).clamp(min=0))
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def tripletmarginloss_reference(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False,
- reduction='mean'):
- d_p = torch.pairwise_distance(anchor, positive, p, eps)
- d_n = torch.pairwise_distance(anchor, negative, p, eps)
- if swap:
- d_s = torch.pairwise_distance(positive, negative, p, eps)
- d_n = torch.min(d_n, d_s)
- output = torch.clamp(margin + d_p - d_n, min=0.0)
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- def marginrankingloss_reference(input1, input2, target, margin=0, reduction='mean'):
- output = (-target * (input1 - input2) + margin).clamp(min=0)
- if reduction == 'mean':
- return output.mean()
- elif reduction == 'sum':
- return output.sum()
- return output
- # this directly follows Graves et al.'s paper, in contrast to the production implementation, it does not use log-space
- def ctcloss_reference(log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean'):
- input_lengths = torch.as_tensor(input_lengths, dtype=torch.long)
- target_lengths = torch.as_tensor(target_lengths, dtype=torch.long)
- dt = log_probs.dtype
- log_probs = log_probs.double() # we need the accuracy as we are not in logspace
- targets = targets.long()
- cum_target_lengths = target_lengths.cumsum(0)
- losses = []
- for i in range(log_probs.size(1)):
- input_length = input_lengths[i].item()
- target_length = target_lengths[i].item()
- cum_target_length = cum_target_lengths[i].item()
- targets_prime = targets.new_full((2 * target_length + 1,), blank)
- if targets.dim() == 2:
- targets_prime[1::2] = targets[i, :target_length]
- else:
- targets_prime[1::2] = targets[cum_target_length - target_length:cum_target_length]
- probs = log_probs[:input_length, i].exp()
- alpha = log_probs.new_zeros((target_length * 2 + 1,))
- alpha[0] = probs[0, blank]
- alpha[1] = probs[0, targets_prime[1]]
- mask_third = (targets_prime[:-2] != targets_prime[2:])
- for t in range(1, input_length):
- alpha_next = alpha.clone()
- alpha_next[1:] += alpha[:-1]
- alpha_next[2:] += torch.where(mask_third, alpha[:-2], alpha.new_zeros(1))
- alpha = probs[t, targets_prime] * alpha_next
- losses.append(-alpha[-2:].sum().log()[None])
- output = torch.cat(losses, 0)
- if reduction == 'mean':
- output = (output / target_lengths.to(dtype=output.dtype, device=output.device)).mean()
- elif reduction == 'sum':
- output = output.sum()
- output = output.to(dt)
- return output
- loss_reference_fns: Dict['str', Callable] = {
- 'KLDivLoss': kldivloss_reference,
- 'KLDivLoss_log_target': partial(kldivloss_reference, log_target=True),
- 'NLLLoss': nllloss_reference,
- 'NLLLossNd': nlllossNd_reference,
- 'SmoothL1Loss': smoothl1loss_reference,
- 'HuberLoss': huberloss_reference,
- 'MultiLabelMarginLoss': multilabelmarginloss_reference,
- 'HingeEmbeddingLoss': hingeembeddingloss_reference,
- 'SoftMarginLoss': softmarginloss_reference,
- 'MultiMarginLoss': multimarginloss_reference,
- 'CosineEmbeddingLoss': cosineembeddingloss_reference,
- 'TripletMarginLoss': tripletmarginloss_reference,
- 'MarginRankingLoss': marginrankingloss_reference,
- 'CTCLoss': ctcloss_reference,
- 'CrossEntropyLoss': cross_entropy_loss_reference
- }
- criterion_tests = []
- def single_batch_reference_criterion_fn(*args):
- """Reference function for criterion supporting no batch dimensions.
- The criterion is passed the input and target in batched form with a single item.
- The output is squeezed to compare with the no-batch input.
- """
- criterion = args[-1]
- def unsqueeze_inp(inp):
- if isinstance(inp, (list, tuple)):
- return [t.unsqueeze(0) for t in inp]
- return inp.unsqueeze(0)
- def flatten(xs):
- result = []
- if isinstance(xs, (list, tuple)):
- for x in xs:
- result.extend(flatten(x))
- else:
- result.append(xs)
- return result
- single_batch_input_args = flatten([unsqueeze_inp(input) for input in args[:-1]])
- output = criterion(*single_batch_input_args)
- reduction = get_reduction(criterion)
- if reduction == 'none':
- return output.squeeze(0)
- # reduction is 'sum' or 'mean' which results in a scalar
- return output
- # Check that regression criterion work with no batch dimensions
- regression_criterion_no_batch = [
- 'L1Loss', 'MSELoss', 'PoissonNLLLoss', 'HuberLoss', 'SmoothL1Loss'
- ]
- reductions = ['none', 'mean', 'sum']
- for name, reduction in product(regression_criterion_no_batch, reductions):
- regression_test_info = dict(
- fullname=f"{name}_no_batch_dim_{reduction}",
- constructor=lambda *args, name=name: getattr(nn, name)(reduction=reduction),
- input_size=(3, ),
- target_size=(3, ),
- reference_fn=single_batch_reference_criterion_fn,
- test_cpp_api_parity=False,
- default_dtype=torch.double,
- )
- criterion_tests.append(regression_test_info)
- for reduction in reductions:
- regression_test_info = dict(
- fullname=f"KLDivLoss_no_batch_dim_{reduction}",
- constructor=lambda: nn.KLDivLoss(reduction=reduction),
- input_fn=lambda: torch.rand((3,)).log(),
- target_fn=lambda: torch.rand((3,)),
- reference_fn=single_batch_reference_criterion_fn,
- test_cpp_api_parity=False,
- default_dtype=torch.double,
- )
- criterion_tests.append(regression_test_info)
- # Check that classification criterion work with no batch dimensions
- # List of tuples of (name, input_fn, target_fn)
- classification_criterion_no_batch = [
- (
- 'BCELoss',
- lambda: torch.sigmoid(torch.randn(9, dtype=torch.double)),
- lambda: torch.randn(9, dtype=torch.double).gt(0).to(torch.double)
- ),
- ('BCEWithLogitsLoss', lambda: torch.randn(9, dtype=torch.double), lambda: torch.randn(9, dtype=torch.double)),
- ('HingeEmbeddingLoss', lambda: torch.randn(9, dtype=torch.double), lambda: torch.tensor([-1, 1, 1] * 3)),
- ('MultiLabelMarginLoss', lambda: torch.randn(4, dtype=torch.double), lambda: torch.tensor([3, 0, -1, 1])),
- ('SoftMarginLoss', lambda: torch.randn(9, dtype=torch.double), lambda: torch.tensor([-1, 1, 1] * 3)),
- ('NLLLoss', lambda: F.log_softmax(torch.randn(3, dtype=torch.double), dim=0), lambda: torch.tensor(1)),
- (
- 'CosineEmbeddingLoss',
- lambda: (torch.randn(9, dtype=torch.double), torch.randn(9, dtype=torch.double)),
- lambda: torch.tensor(1, dtype=torch.double)
- ),
- # For MarginRankingLoss, input_fn : (x1, x2) and target_fn : target
- ('MarginRankingLoss', lambda: (torch.randn(()), torch.randn(())), lambda: torch.randn(()).sign()),
- # For TripletMarginLoss, input_fn : (anchor, positive) and target_fn : negative
- (
- 'TripletMarginLoss',
- lambda: (torch.randn(9, dtype=torch.double), torch.randn(9, dtype=torch.double)),
- lambda: torch.randn(9, dtype=torch.double)
- ),
- ('MultiLabelSoftMarginLoss', lambda: torch.randn(9, dtype=torch.double), lambda: torch.randn(9)),
- ]
- classification_criterion_no_batch_extra_info: Dict[str, dict] = {
- 'MultiLabelMarginLoss': {'check_gradgrad': False},
- }
- # TODO : Fix these discrepancies
- classification_cpp_parity = {
- 'BCELoss': False,
- 'BCEWithLogitsLoss': False,
- 'HingeEmbeddingLoss': False,
- 'NLLLoss': False,
- 'SoftMarginLoss': False,
- }
- reductions = ['none', 'mean', 'sum']
- for (name, input_fn, target_fn), reduction in product(classification_criterion_no_batch,
- reductions):
- classification_test_info = dict(
- fullname=f"{name}_no_batch_dim_{reduction}",
- constructor=lambda *args, name=name: getattr(nn, name)(reduction=reduction),
- input_fn=lambda f=input_fn: f(),
- target_fn=lambda f=target_fn: f(),
- reference_fn=single_batch_reference_criterion_fn,
- test_cpp_api_parity=True,
- has_parity=classification_cpp_parity.get(name, True)
- )
- extra_info = classification_criterion_no_batch_extra_info.get(name, {})
- classification_test_info.update(extra_info)
- criterion_tests.append(classification_test_info)
- class NNTestCase(TestCase):
- # _forward is defined in classes inheriting from NNTestCase
- @abstractmethod
- def _forward(self, *args, **kwargs):
- raise NotImplementedError
- @abstractmethod
- def _get_parameters(self, module: nn.Module) -> Tuple[List[nn.Parameter], List[nn.Parameter]]:
- raise NotImplementedError
- @abstractmethod
- def _zero_grad_parameters(self, module: nn.Module) -> None:
- raise NotImplementedError
- @abstractmethod
- def _backward(self, module: nn.Module,
- input: _TensorOrTensors, output: torch.Tensor,
- grad_output: Union[torch.Tensor, Sequence[torch.Tensor]],
- create_graph: bool = False):
- raise NotImplementedError
- def _jacobian(self, input, num_out):
- if isinstance(input, tuple):
- return tuple(self._jacobian(elem, num_out) for elem in input)
- elif isinstance(input, list):
- return [self._jacobian(elem, num_out) for elem in input]
- else:
- return torch.zeros(input.nelement(), num_out)
- def _flatten_tensors(self, x):
- if isinstance(x, torch.Tensor):
- if x.is_sparse:
- return x.to_dense().view(-1)
- else:
- return x.view(-1)
- else:
- return tuple(self._flatten_tensors(a) for a in x)
- def _zero_grad_input(self, input):
- if isinstance(input, torch.Tensor):
- if input.requires_grad and input.grad is not None:
- input.grad.zero_()
- input.grad.detach_()
- else:
- for i in input:
- self._zero_grad_input(i)
- def _analytical_jacobian(self, module, input: _TensorOrTensors, jacobian_input=True, jacobian_parameters=True):
- output = self._forward(module, input)
- output_size = output.nelement()
- if jacobian_input:
- jacobian_inp = self._jacobian(input, output_size)
- flat_jacobian_input = list(_iter_tensors(jacobian_inp))
- if jacobian_parameters:
- num_param = sum(p.numel() for p in self._get_parameters(module)[0])
- jacobian_param = torch.zeros(num_param, output_size)
- for i in range(output_size):
- param, d_param = self._get_parameters(module)
- # make non grad zeros
- d_param = [torch.zeros_like(p) if d is None else d for (p, d) in zip(param, d_param)]
- d_out = torch.zeros_like(output)
- flat_d_out = d_out.view(-1)
- flat_d_out[i] = 1
- if jacobian_parameters:
- self._zero_grad_parameters(module)
- # Tensors will accumulate gradient from multiple steps
- if jacobian_input:
- self._zero_grad_input(input)
- d_input = self._backward(module, input, output, d_out)
- if jacobian_input:
- for jacobian_x, d_x in zip(flat_jacobian_input, _iter_tensors(d_input)):
- jacobian_x[:, i] = d_x.contiguous().view(-1)
- if jacobian_parameters:
- jacobian_param[:, i] = torch.cat(self._flatten_tensors(d_param), 0)
- res: Tuple[torch.Tensor, ...] = tuple()
- if jacobian_input:
- res += jacobian_inp,
- if jacobian_parameters:
- res += jacobian_param,
- return res
- def _numerical_jacobian(self, module, input: _TensorOrTensors, jacobian_input=True, jacobian_parameters=True):
- def fw(*input):
- return self._forward(module, input).detach()
- res: Tuple[torch.Tensor, ...] = tuple()
- if jacobian_input:
- res += _get_numerical_jacobian(fw, input, eps=1e-6),
- if jacobian_parameters:
- param, _ = self._get_parameters(module)
- to_cat = []
- for p in param:
- jacobian = _get_numerical_jacobian(fw, input, target=p, eps=1e-6)
- # get_numerical_jacobian returns a list of tuples but we require a tensor
- to_cat.append(jacobian[0][0])
- res += (torch.cat(to_cat, 0),)
- return res
- def check_jacobian(self, module, input: _TensorOrTensors, jacobian_input=True):
- jacobian_parameters = bool(self._get_parameters(module)[0])
- analytical = self._analytical_jacobian(module, input, jacobian_input, jacobian_parameters)
- numerical = self._numerical_jacobian(module, input, jacobian_input, jacobian_parameters)
- analytical_t = list(_iter_tensors(analytical))
- numerical_t = list(_iter_tensors(numerical))
- differences = []
- for a, n in zip(analytical_t, numerical_t):
- if a.numel() != 0:
- differences.append(a.add(n, alpha=-1).abs().max())
- # TODO: compare structure (ensure analytic jacobian has correct shape)
- if len(differences) > 0:
- self.assertLessEqual(max(differences), PRECISION) # type: ignore[type-var]
- class TestBase:
- _required_arg_names = {'constructor_args', 'input', 'extra_args'}
- def __init__(self, constructor, desc='', reference_fn=None, fullname=None, **kwargs):
- self.desc = desc
- self.fullname = fullname
- self.constructor = constructor
- self.reference_fn = reference_fn
- for name in self._required_arg_names:
- if name not in kwargs and name + '_fn' not in kwargs and name + '_size' not in kwargs:
- if name in {'constructor_args', 'extra_args'}:
- kwargs[name] = tuple()
- else:
- raise ValueError(f"{self.get_name()}: Specify {name} by a value, a function to generate it, or it's size!")
- self._extra_kwargs = kwargs
- self._arg_cache = {}
- def get_name(self):
- if self.fullname is not None:
- return 'test_' + self.fullname
- test_name = 'test_' + self.constructor.__name__
- if self.desc:
- test_name += '_' + self.desc
- return test_name
- def _unpack(self, value):
- if isinstance(value, torch.Tensor):
- return value
- elif is_iterable(value):
- return type(value)(self._unpack(v) for v in value)
- else:
- return value
- @property
- def constructor_args(self):
- return self._get_arg('constructor_args', True)
- @property
- def extra_args(self):
- return self._get_arg('extra_args', True)
- def _get_arg(self, name, unpack):
- assert name in self._required_arg_names
- if name not in self._arg_cache:
- fn_name = name + '_fn'
- size_name = name + '_size'
- if name in self._extra_kwargs:
- self._arg_cache[name] = self._extra_kwargs[name]
- elif fn_name in self._extra_kwargs:
- self._arg_cache[name] = self._extra_kwargs[fn_name]()
- else:
- assert size_name in self._extra_kwargs, \
- f"Missing `{name}`, `{size_name}` or `{fn_name}` for {self.get_name()}"
- def map_tensor_sizes(sizes):
- if isinstance(sizes, list):
- return [map_tensor_sizes(s) for s in sizes]
- elif isinstance(sizes, torch.Tensor):
- return sizes.double()
- else:
- return torch.randn(sizes)
- self._arg_cache[name] = map_tensor_sizes(self._extra_kwargs[size_name])
- return self._unpack(self._arg_cache[name]) if unpack else self._arg_cache[name]
- def _get_input(self, unpack=True):
- return self._get_arg('input', unpack)
- def __call__(self, test_case):
- raise NotImplementedError
- class ModuleTest(TestBase):
- @abstractmethod
- def _do_test(self, test_case: Any, module: nn.Module, input: Any) -> Any:
- raise NotImplementedError
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.jacobian_input = kwargs.get('jacobian_input', True)
- self.should_test_cuda = kwargs.get('test_cuda', True)
- self.should_test_pickle = kwargs.get('pickle', True)
- self.check_gradgrad = kwargs.get('check_gradgrad', True)
- self.FIXME_no_cuda_gradgrad_comparison = \
- kwargs.get('FIXME_no_cuda_gradgrad_comparison', False)
- self.precision = kwargs.get('precision', 2e-4)
- self.check_forward_only = kwargs.get('check_forward_only', False)
- self.default_dtype = kwargs.get('default_dtype', None)
- if self.default_dtype is None:
- self.default_dtype = torch.get_default_dtype()
- def __call__(self, test_case):
- with set_default_dtype(self.default_dtype):
- module = self.constructor(*self.constructor_args)
- input = self._get_input()
- if self.reference_fn is not None:
- out = test_case._forward(module, input)
- ref_input = deepcopy(input)
- ref_module = deepcopy(module)
- expected_out = self.reference_fn(ref_input, test_case._get_parameters(module)[0], ref_module)
- test_case.assertEqual(out, expected_out, exact_dtype=False)
- if self.check_forward_only:
- return
- self.test_noncontig(test_case, module, input)
- if self.should_test_pickle:
- # TODO: do this with in-memory files as soon as torch.save will support it
- with tempfile.TemporaryFile() as f:
- test_case._forward(module, input)
- torch.save(module, f)
- f.seek(0)
- module_copy = torch.load(f)
- test_case.assertEqual(test_case._forward(module, input), test_case._forward(module_copy, input))
- self._do_test(test_case, module, input)
- def noncontiguize(self, obj):
- if isinstance(obj, list):
- return [self.noncontiguize(o) for o in obj]
- elif isinstance(obj, tuple):
- return tuple(self.noncontiguize(o) for o in obj)
- tensor = obj
- ndim = tensor.dim()
- # Always making only the last dimension noncontiguous is easy to hide
- # bugs because .view(-1) will still work. So try to find a dim with size
- # > 1 and make that non-contiguous, i.e., stack + select on the
- # dimension directly after that.
- dim = ndim
- for d in range(ndim):
- if tensor.size(d) > 1:
- dim = d + 1
- break
- noncontig = torch.stack([torch.empty_like(tensor), tensor], dim).select(dim, 1).detach()
- assert noncontig.numel() == 1 or noncontig.numel() == 0 or not noncontig.is_contiguous()
- noncontig.requires_grad = tensor.requires_grad
- return noncontig
- def test_noncontig(self, test_case, module, input):
- # check no scalars, can't make non-contig
- if isinstance(input, torch.Tensor) and input.dim() == 0:
- return
- if any(i.dim() == 0 for i in input if isinstance(i, torch.Tensor)):
- return
- test_case._zero_grad_parameters(module)
- test_case._zero_grad_input(input)
- with freeze_rng_state():
- output = test_case._forward(module, input)
- if getattr(module, "return_indices", False):
- output = output[0]
- grad_output = output.new(output.shape).normal_()
- output = output.clone()
- d_input = deepcopy(test_case._backward(module, input, output, grad_output))
- d_param = deepcopy(test_case._get_parameters(module)[1])
- nc_input = self.noncontiguize(input)
- nc_grad_output = self.noncontiguize(grad_output)
- for contig_i, contig_g in product((True, False), repeat=2):
- i = input if contig_i else nc_input
- # Some ops, e.g., nn.Flatten, return gradient that shares
- # storage with the grad_output. Hence we copy here.
- go = deepcopy(grad_output if contig_g else nc_grad_output)
- test_case._zero_grad_parameters(module)
- test_case._zero_grad_input(i)
- with freeze_rng_state():
- out = test_case._forward(module, i)
- if getattr(module, "return_indices", False):
- out = out[0]
- grad = test_case._backward(module, i, out, go)
- test_case.assertEqual(out, output)
- test_case.assertEqual(grad, d_input, atol=1e-4, rtol=0)
- test_case.assertEqual(test_case._get_parameters(module)[1], d_param)
- def test_cuda(self, test_case):
- if not TEST_CUDA or not self.should_test_cuda:
- raise unittest.SkipTest('Excluded from CUDA tests')
- with set_default_dtype(self.default_dtype):
- cpu_input = self._get_input()
- type_map = {torch.double: torch.float}
- cpu_input_tuple = cpu_input if isinstance(cpu_input, tuple) else (cpu_input,)
- is_any_input_complex = any(isinstance(t, torch.Tensor) and t.dtype.is_complex for t in cpu_input_tuple)
- gpu_input_tuple = to_gpu(cpu_input_tuple, type_map=type_map)
- cpu_module = self.constructor(*self.constructor_args)
- gpu_module = self.constructor(*self.constructor_args).float().cuda()
- cpu_param = test_case._get_parameters(cpu_module)
- gpu_param = test_case._get_parameters(gpu_module)
- for cpu_p, gpu_p in zip(cpu_param[0], gpu_param[0]):
- gpu_p.data.copy_(cpu_p)
- test_case._zero_grad_input(cpu_input_tuple)
- test_case._zero_grad_input(gpu_input_tuple)
- test_case._zero_grad_parameters(cpu_module)
- test_case._zero_grad_parameters(gpu_module)
- cpu_output = test_case._forward(cpu_module, cpu_input_tuple)
- gpu_output = test_case._forward(gpu_module, gpu_input_tuple)
- if getattr(cpu_module, "return_indices", False):
- cpu_output = cpu_output[0]
- gpu_output = gpu_output[0]
- test_case.assertEqual(cpu_output, gpu_output, atol=self.precision, rtol=0, exact_dtype=False)
- # Run backwards on CPU and GPU and compare results
- for _ in range(5):
- cpu_gradOutput = cpu_output.clone().normal_()
- gpu_gradOutput = cpu_gradOutput.type_as(gpu_output)
- cpu_gradInput = test_case._backward(cpu_module, cpu_input_tuple, cpu_output, cpu_gradOutput)
- gpu_gradInput = test_case._backward(gpu_module, gpu_input_tuple, gpu_output, gpu_gradOutput)
- test_case.assertEqual(cpu_gradInput, gpu_gradInput, atol=self.precision, rtol=0, exact_dtype=False)
- for cpu_d_p, gpu_d_p in zip(cpu_param[1], gpu_param[1]):
- test_case.assertEqual(cpu_d_p, gpu_d_p, atol=self.precision, rtol=0)
- # Run double-backwards on CPU and GPU and compare results
- if self.check_gradgrad and not self.FIXME_no_cuda_gradgrad_comparison:
- cpu_output = cpu_module(*cpu_input_tuple)
- gpu_output = gpu_module(*gpu_input_tuple)
- if getattr(cpu_module, "return_indices", False):
- cpu_output = cpu_output[0]
- gpu_output = gpu_output[0]
- cpu_gradOutput = torch.randn_like(cpu_output, requires_grad=True)
- gpu_gradOutput = cpu_gradOutput.type_as(gpu_output).detach()
- gpu_gradOutput.requires_grad = True
- cpu_gradInputs = torch.autograd.grad(
- cpu_output,
- cpu_input_tuple + tuple(cpu_module.parameters()),
- cpu_gradOutput,
- create_graph=True)
- gpu_gradInputs = torch.autograd.grad(
- gpu_output,
- gpu_input_tuple + tuple(gpu_module.parameters()),
- gpu_gradOutput,
- create_graph=True)
- for cpu_d_i, gpu_d_i in zip(cpu_gradInputs, gpu_gradInputs):
- test_case.assertEqual(cpu_d_i, gpu_d_i, atol=self.precision, rtol=0, exact_dtype=False)
- # We mix output into the second backwards computation so that
- # torch.autograd.grad doesn't complain that some inputs
- # are unreachable (which can happen if you differentiate
- # only on the gradient.
- if is_any_input_complex:
- outputs_cpu = cpu_output.sum().abs() + sum(x.sum().abs() for x in cpu_gradInputs)
- outputs_gpu = gpu_output.sum().abs() + sum(x.sum().abs() for x in gpu_gradInputs)
- else:
- outputs_cpu = cpu_output.sum() + sum(x.sum() for x in cpu_gradInputs)
- outputs_gpu = gpu_output.sum() + sum(x.sum() for x in gpu_gradInputs)
- cpu_gg = torch.autograd.grad(
- outputs_cpu,
- cpu_input_tuple + (cpu_gradOutput,) + tuple(cpu_module.parameters()),
- retain_graph=True)
- gpu_gg = torch.autograd.grad(
- outputs_gpu,
- gpu_input_tuple + (gpu_gradOutput,) + tuple(gpu_module.parameters()),
- retain_graph=True)
- test_case.assertEqual(cpu_gradInput, gpu_gradInput, atol=self.precision, rtol=0, exact_dtype=False)
- for cpu_d_p, gpu_d_p in zip(cpu_gg, gpu_gg):
- test_case.assertEqual(cpu_d_p, gpu_d_p, atol=self.precision, rtol=0, exact_dtype=False)
- self.test_noncontig(test_case, gpu_module, gpu_input_tuple)
- class InputVariableMixin:
- def _get_input(self):
- input = TestBase._get_input(self, False) # type: ignore[arg-type]
- def map_variables(i):
- if isinstance(i, torch.Tensor):
- if i.is_floating_point() or i.is_complex():
- i.requires_grad = True
- return i
- else:
- return type(i)(map_variables(elem) for elem in i)
- return map_variables(input)
- class NewModuleTest(InputVariableMixin, ModuleTest): # type: ignore[misc]
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.cudnn = kwargs.get('cudnn', False)
- self.check_inplace = kwargs.get('check_inplace', False)
- self.check_gradgrad = kwargs.get('check_gradgrad', True)
- self.skip_double = kwargs.get('skip_double', False)
- self.skip_half = kwargs.get('skip_half', False)
- self.with_tf32 = kwargs.get('with_tf32', False)
- self.tf32_precision = kwargs.get('tf32_precision', 0.001)
- self.test_cpu = kwargs.get('test_cpu', True)
- self.has_sparse_gradients = kwargs.get('has_sparse_gradients', False)
- self.check_batched_grad = kwargs.get('check_batched_grad', True)
- self.gradcheck_fast_mode = kwargs.get('gradcheck_fast_mode', None)
- self.supports_forward_ad = kwargs.get('supports_forward_ad', False)
- self.supports_fwgrad_bwgrad = kwargs.get('supports_fwgrad_bwgrad', False)
- def _check_gradients(self, test_case, module, input_tuple):
- params = tuple(x for x in module.parameters())
- num_inputs = len(input_tuple)
- def fn_to_gradcheck(*inputs_and_params, **kwargs):
- assert not kwargs
- return test_case._forward(module, inputs_and_params[:num_inputs])
- # gradcheck doesn't support operators that take in dense inputs but
- # return sparse parameters. This only happens in the case of nn.Embedding
- # and nn.EmbeddingBag. Instead, we call `self.check_jacobian`, which
- # is a slightly different version of gradcheck that can handle this.
- if self.has_sparse_gradients:
- assert num_inputs == 1
- test_input_jacobian = torch.is_floating_point(input_tuple[0])
- test_case.check_jacobian(module, input_tuple[0], test_input_jacobian)
- else:
- test_case.assertTrue(gradcheck(fn_to_gradcheck, input_tuple + params,
- check_batched_grad=self.check_batched_grad,
- fast_mode=self.gradcheck_fast_mode,
- check_forward_ad=self.supports_forward_ad))
- if self.check_gradgrad:
- test_case.assertTrue(gradgradcheck(fn_to_gradcheck, input_tuple + params,
- check_batched_grad=self.check_batched_grad,
- fast_mode=self.gradcheck_fast_mode,
- check_fwd_over_rev=self.supports_fwgrad_bwgrad))
- def _do_test(self, test_case, module, input):
- num_threads = torch.get_num_threads()
- torch.set_num_threads(1)
- input_tuple = input if isinstance(input, tuple) else (input,)
- self._check_gradients(test_case, module, input_tuple)
- # check if module can be printed
- module.__repr__()
- if self.check_inplace:
- # check if the inplace variant of the module gives the same result
- # as the out-of-place
- # check_inplace doesn't support multiple input tensors, since we don't have any modules
- # that modify the inputs in-place and that accept more than one input
- assert len(input_tuple) == 1
- input = input_tuple[0]
- module_ip = self.constructor(*self.constructor_args, inplace=True)
- input_version = input._version
- with freeze_rng_state():
- output = module(input)
- test_case.assertEqual(input._version, input_version)
- input_ip = deepcopy(input)
- input_ip_clone = input_ip.clone()
- with freeze_rng_state():
- output_ip = module_ip(input_ip_clone)
- test_case.assertNotEqual(input_ip_clone._version, input_version)
- test_case.assertEqual(output, output_ip)
- grad = output.data.clone().normal_()
- if input.grad is not None:
- with torch.no_grad():
- input.grad.zero_()
- if input_ip.grad is not None:
- with torch.no_grad():
- input_ip.grad.zero_()
- output.backward(grad)
- output_ip.backward(grad)
- test_case.assertEqual(input.grad, input_ip.grad)
- def assert_module_parameters_are(tensor_type, device_id=None):
- for p in module.parameters():
- test_case.assertIsInstance(p, tensor_type)
- if device_id is not None:
- test_case.assertEqual(p.get_device(), device_id)
- if all(isinstance(t, torch.LongTensor) for t in input_tuple) and TEST_CUDA:
- # check that cuda() moves module parameters to correct GPU device,
- # and that float() casts parameters correctly
- input_tuple = tuple(t.cuda() for t in input_tuple)
- module.float().cuda()
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 0) # type: ignore[attr-defined]
- if torch.cuda.device_count() > 1:
- input_tuple = tuple(t.cuda(1) for t in input_tuple)
- module.cuda(1)
- with torch.cuda.device(1):
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 1) # type: ignore[attr-defined]
- else:
- # check that float()/double() casters work correctly
- def to_type(tensor, real, complex):
- if tensor.is_complex():
- return tensor.to(complex)
- elif tensor.is_floating_point():
- return tensor.to(real)
- else:
- return tensor
- def to_half(x):
- # TODO: torch.complex32 when properly supported
- return to_type(x, torch.float16, None)
- def to_single(x):
- return to_type(x, torch.float32, torch.complex64)
- def to_double(x):
- return to_type(x, torch.float64, torch.complex128)
- # to float
- input_tuple = tuple(to_single(t) for t in input_tuple)
- module.float()
- module(*input_tuple)
- assert_module_parameters_are(torch.FloatTensor)
- # and back to double
- input_tuple = tuple(to_double(t) for t in input_tuple)
- module.double()
- module(*input_tuple)
- assert_module_parameters_are(torch.DoubleTensor)
- if TEST_CUDA and self.should_test_cuda:
- # check that cuda() moves module parameters to correct GPU device,
- # and that float() casts parameters correctly
- # to GPU0
- input_tuple = tuple(to_single(t).cuda() for t in input_tuple)
- module.float().cuda()
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 0) # type: ignore[attr-defined]
- # to CPU
- input_tuple = tuple(t.cpu() for t in input_tuple)
- module.cpu()
- module(*input_tuple)
- assert_module_parameters_are(torch.FloatTensor)
- # back to GPU0
- input_tuple = tuple(t.cuda() for t in input_tuple)
- module.cuda()
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 0) # type: ignore[attr-defined]
- # test that forwards of module runs correctly without cuDNN
- if self.cudnn:
- with torch.backends.cudnn.flags(enabled=False):
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 0) # type: ignore[attr-defined]
- if torch.cuda.device_count() >= 2:
- # test cross-GPU transfer works
- # to GPU1
- input_tuple = tuple(t.cuda(1) for t in input_tuple)
- module.cuda(1)
- with torch.cuda.device(1):
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.FloatTensor, 1) # type: ignore[attr-defined]
- if not self.skip_double:
- # test double()
- input_tuple = tuple(to_double(t).cuda() for t in input_tuple)
- module.double().cuda()
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.DoubleTensor, 0) # type: ignore[attr-defined]
- # test half()
- if not self.skip_half:
- input_tuple = tuple(to_half(t).cuda() for t in input_tuple)
- module.half().cuda()
- module(*input_tuple)
- assert_module_parameters_are(torch.cuda.HalfTensor, 0) # type: ignore[attr-defined]
- torch.set_num_threads(num_threads)
- def _get_target(self):
- return self._get_arg('target', False)
- @property
- def constructor_args(self):
- return self._get_arg('constructor_args', False)
- class CriterionTest(InputVariableMixin, TestBase): # type: ignore[misc]
- # TODO: check that criterions don't ignore grad_output
- _required_arg_names = TestBase._required_arg_names.union({'target'})
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.should_test_cuda = kwargs.get('test_cuda', True)
- self.check_forward_only = kwargs.get('check_forward_only', False)
- self.check_gradgrad = kwargs.get('check_gradgrad', True)
- self.check_half = kwargs.get('check_half', True)
- self.check_bfloat16 = kwargs.get('check_bfloat16', False)
- self.check_complex = kwargs.get('check_complex', False)
- self.test_cpu = kwargs.get('test_cpu', True)
- self.with_tf32 = kwargs.get('with_tf32', True)
- self.tf32_precision = kwargs.get('tf32_precision', 0.001)
- self.check_batched_grad = kwargs.get('check_batched_grad', True)
- self.default_dtype = kwargs.get('default_dtype', None)
- if self.default_dtype is None:
- self.default_dtype = torch.get_default_dtype()
- def __call__(self, test_case):
- with set_default_dtype(self.default_dtype):
- module = self.constructor(*self.constructor_args)
- input = self._get_input()
- # Check that these methods don't raise errors
- module.__repr__()
- str(module)
- target = self._get_target()
- if self.reference_fn is not None:
- out = test_case._forward_criterion(module, input, target, extra_args=self.extra_args)
- ref_args = (deepcopy(input), deepcopy(target)) + self.extra_args + (module,)
- expected_out = self.reference_fn(*ref_args)
- test_case.assertEqual(out, expected_out)
- if self.check_forward_only:
- return
- params = tuple(x for x in module.parameters())
- if not isinstance(input, tuple):
- inputs = (input,) + params + (target,)
- def apply_fn(input, target, *params):
- return module(input, target)
- else:
- inputs = input + params + (target,)
- def apply_fn(input1, input2, target, *params): # type: ignore[misc]
- return module(input1, input2, target)
- gradcheck(apply_fn, inputs, check_batched_grad=self.check_batched_grad)
- if self.check_gradgrad:
- gradgradcheck(apply_fn, inputs, check_batched_grad=self.check_batched_grad)
- def test_cuda(self, test_case, dtype, extra_args=None):
- def convert_dtype(obj, dtype, requires_grad=False):
- if isinstance(obj, torch.Tensor):
- return obj.detach().to(dtype=dtype).requires_grad_(requires_grad)
- elif isinstance(obj, tuple):
- return tuple(convert_dtype(o, dtype, requires_grad) for o in obj)
- else:
- return obj
- if not TEST_CUDA or not self.should_test_cuda:
- raise unittest.SkipTest('Excluded from CUDA tests')
- with set_default_dtype(self.default_dtype):
- cpu_input = self._get_input()
- cpu_target = self._get_target()
- cpu_module = self.constructor(*self.constructor_args)
- gpu_module = self.constructor(*self.constructor_args)
- # Convert input, target and module parameters to dtype
- cpu_input = convert_dtype(cpu_input, dtype, True)
- if cpu_target.is_floating_point() or cpu_target.is_complex():
- cpu_target = convert_dtype(cpu_target, dtype)
- cpu_module.type(dtype)
- gpu_module.type(dtype)
- # GPU setup
- gpu_input = to_gpu(cpu_input)
- gpu_target = to_gpu(cpu_target)
- gpu_module.cuda()
- # torch.HalfTensor doesn't support most operations, converting back to default
- if dtype in {torch.half, torch.bfloat16}:
- cpu_input = self._get_input()
- cpu_target = self._get_target()
- # Loss modules with weights require consistent input/module weight types
- cpu_module = self.constructor(*self.constructor_args)
- cpu_output = test_case._forward_criterion(cpu_module, cpu_input, cpu_target, extra_args=extra_args)
- gpu_output = test_case._forward_criterion(gpu_module, gpu_input, gpu_target, extra_args=extra_args)
- # dtype used to be able to be None, so set precision in this way instead of a precision map
- test_case.assertEqual(cpu_output, gpu_output,
- atol=1e-1 if dtype in {torch.half, torch.bfloat16} else 4e-4, rtol=0, exact_dtype=False)
- cpu_gradInput = test_case._backward_criterion(
- cpu_module, cpu_input, cpu_output, cpu_target, extra_args=extra_args)
- gpu_gradInput = test_case._backward_criterion(
- gpu_module, gpu_input, gpu_output, gpu_target, extra_args=extra_args)
- # dtype used to be able to be None, so set precision in this way instead of a precision map
- test_case.assertEqual(cpu_gradInput, gpu_gradInput,
- atol=1e-1 if dtype in {torch.half, torch.bfloat16} else 4e-4, rtol=0, exact_dtype=False)
- def _get_target(self):
- return self._get_arg('target', False)
- @property
- def constructor_args(self):
- return self._get_arg('constructor_args', False)
- @property
- def extra_args(self):
- return self._get_arg('extra_args', False)
- def _test_bfloat16_ops(test_case, op, device, inp_dims=(), prec=1e-2, scale_factor=None):
- # fp32 compute
- input1 = torch.randn(inp_dims, dtype=torch.float32, device=device, requires_grad=True)
- if scale_factor is not None:
- input1 = (torch.rand(inp_dims, dtype=torch.bfloat16, device=device) * scale_factor).float().requires_grad_()
- out1 = op(input1)
- grad_input1 = torch.randn_like(out1, device=device)
- out1.backward(grad_input1)
- # bfloat16 compute
- op_bfp16 = op.bfloat16()
- input2 = input1.detach().bfloat16().requires_grad_()
- grad_input2 = grad_input1.bfloat16()
- out2 = op_bfp16(input2)
- out2.backward(grad_input2)
- test_case.assertEqual(out1, out2, atol=prec, rtol=prec, exact_dtype=False)
- test_case.assertEqual(input1.grad.data, input2.grad.data, atol=prec, rtol=prec, exact_dtype=False)
- def _test_module_empty_input(test_case, module, inp, check_size=True, inference=False):
- if not inference:
- inp.requires_grad_(True)
- out = module(inp)
- if not inference:
- gO = torch.rand_like(out)
- out.backward(gO)
- if check_size:
- test_case.assertEqual(out.size(), inp.size())
- if not inference:
- for p in module.parameters():
- if p.requires_grad:
- test_case.assertEqual(p.grad, torch.zeros_like(p.grad))
- test_case.assertEqual(inp.grad, torch.zeros_like(inp))
- def _create_basic_net():
- class Layer(nn.Module):
- def __init__(self):
- super().__init__()
- self.layer_dummy_param = nn.Parameter(torch.empty(3, 5))
- self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7))
- class Net(nn.Module):
- def __init__(self):
- super().__init__()
- self.l1 = Layer()
- self.dummy_param = nn.Parameter(torch.empty(3, 5))
- self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1))
- l = Layer()
- n = Net()
- s = nn.Sequential(n, n)
- return l, n, s
|