| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006 |
- """
- Contains utility functions for working with nested python data structures.
- A *pytree* is Python nested data structure. It is a tree in the sense that
- nodes are Python collections (e.g., list, tuple, dict) and the leaves are
- Python values. Furthermore, a pytree should not contain reference cycles.
- pytrees are useful for working with nested collections of Tensors. For example,
- one can use `tree_map` to map a function over all Tensors inside some nested
- collection of Tensors and `tree_leaves` to get a flat list of all Tensors
- inside some nested collection. pytrees are helpful for implementing nested
- collection support for PyTorch APIs.
- """
- import functools
- import sys
- import types
- from typing import (
- Any,
- Callable,
- Iterable,
- List,
- Optional,
- overload,
- Tuple,
- Type,
- TypeVar,
- Union,
- )
- from typing_extensions import deprecated
- import torch
- if torch._running_with_deploy(): # type: ignore[no-untyped-call]
- raise ImportError("C++ pytree utilities do not work with torch::deploy.")
- import optree
- from optree import PyTreeSpec # direct import for type annotations
- from torch.utils._pytree import KeyEntry
- __all__ = [
- "PyTree",
- "Context",
- "FlattenFunc",
- "UnflattenFunc",
- "DumpableContext",
- "ToDumpableContextFn",
- "FromDumpableContextFn",
- "TreeSpec",
- "LeafSpec",
- "keystr",
- "key_get",
- "register_pytree_node",
- "tree_flatten",
- "tree_flatten_with_path",
- "tree_unflatten",
- "tree_iter",
- "tree_leaves",
- "tree_leaves_with_path",
- "tree_structure",
- "tree_map",
- "tree_map_with_path",
- "tree_map_",
- "tree_map_only",
- "tree_map_only_",
- "tree_all",
- "tree_any",
- "tree_all_only",
- "tree_any_only",
- "treespec_dumps",
- "treespec_loads",
- "treespec_pprint",
- ]
- T = TypeVar("T")
- S = TypeVar("S")
- U = TypeVar("U")
- R = TypeVar("R")
- Context = Any
- PyTree = Any
- TreeSpec = PyTreeSpec
- FlattenFunc = Callable[[PyTree], Tuple[List[Any], Context]]
- UnflattenFunc = Callable[[Iterable[Any], Context], PyTree]
- OpTreeUnflattenFunc = Callable[[Context, Iterable[Any]], PyTree]
- DumpableContext = Any # Any json dumpable text
- ToDumpableContextFn = Callable[[Context], DumpableContext]
- FromDumpableContextFn = Callable[[DumpableContext], Context]
- KeyPath = Tuple[KeyEntry, ...]
- FlattenWithKeysFunc = Callable[[PyTree], Tuple[List[Tuple[KeyEntry, Any]], Any]]
- def _reverse_args(func: UnflattenFunc) -> OpTreeUnflattenFunc:
- @functools.wraps(func)
- def wrapped(*args: Any, **kwargs: Any) -> Any:
- return func(*reversed(args), **kwargs)
- return wrapped
- def register_pytree_node(
- cls: Type[Any],
- flatten_fn: FlattenFunc,
- unflatten_fn: UnflattenFunc,
- *,
- serialized_type_name: Optional[str] = None,
- to_dumpable_context: Optional[ToDumpableContextFn] = None,
- from_dumpable_context: Optional[FromDumpableContextFn] = None,
- flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
- ) -> None:
- """Register a container-like type as pytree node.
- Args:
- cls (type): A Python type to treat as an internal pytree node.
- flatten_fn (callable): A function to be used during flattening, taking an instance of
- ``cls`` and returning a pair, with (1) an iterable for the children to be flattened
- recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
- passed to the ``unflatten_fn``.
- unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
- returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
- The function should return an instance of ``cls``.
- serialized_type_name (str, optional): A keyword argument used to specify the fully
- qualified name used when serializing the tree spec.
- to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
- to convert the context of the pytree to a custom json dumpable representation. This is
- used for json serialization, which is being used in :mod:`torch.export` right now.
- from_dumpable_context (callable, optional): An optional keyword argument to custom specify
- how to convert the custom json dumpable representation of the context back to the
- original context. This is used for json deserialization, which is being used in
- :mod:`torch.export` right now.
- Example::
- >>> # xdoctest: +SKIP
- >>> # Registry a Python type with lambda functions
- >>> register_pytree_node(
- ... set,
- ... lambda s: (sorted(s), None, None),
- ... lambda children, _: set(children),
- ... )
- """
- if flatten_with_keys_fn is not None:
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
- _private_register_pytree_node(
- cls,
- flatten_fn,
- unflatten_fn,
- serialized_type_name=serialized_type_name,
- to_dumpable_context=to_dumpable_context,
- from_dumpable_context=from_dumpable_context,
- )
- from . import _pytree as python
- python._private_register_pytree_node(
- cls,
- flatten_fn,
- unflatten_fn,
- serialized_type_name=serialized_type_name,
- to_dumpable_context=to_dumpable_context,
- from_dumpable_context=from_dumpable_context,
- )
- @deprecated(
- "`torch.utils._cxx_pytree._register_pytree_node` is deprecated. "
- "Please use `torch.utils._cxx_pytree.register_pytree_node` instead.",
- category=FutureWarning,
- )
- def _register_pytree_node(
- cls: Type[Any],
- flatten_fn: FlattenFunc,
- unflatten_fn: UnflattenFunc,
- *,
- serialized_type_name: Optional[str] = None,
- to_dumpable_context: Optional[ToDumpableContextFn] = None,
- from_dumpable_context: Optional[FromDumpableContextFn] = None,
- ) -> None:
- """Register a container-like type as pytree node for the C++ pytree only.
- The ``namespace`` argument is used to avoid collisions that occur when different libraries
- register the same Python type with different behaviors. It is recommended to add a unique prefix
- to the namespace to avoid conflicts with other libraries. Namespaces can also be used to specify
- the same class in different namespaces for different use cases.
- .. warning::
- For safety reasons, a ``namespace`` must be specified while registering a custom type. It is
- used to isolate the behavior of flattening and unflattening a pytree node type. This is to
- prevent accidental collisions between different libraries that may register the same type.
- Args:
- cls (type): A Python type to treat as an internal pytree node.
- flatten_fn (callable): A function to be used during flattening, taking an instance of
- ``cls`` and returning a pair, with (1) an iterable for the children to be flattened
- recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
- passed to the ``unflatten_fn``.
- unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
- returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
- The function should return an instance of ``cls``.
- serialized_type_name (str, optional): A keyword argument used to specify the fully
- qualified name used when serializing the tree spec.
- to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
- to convert the context of the pytree to a custom json dumpable representation. This is
- used for json serialization, which is being used in :mod:`torch.export` right now.
- from_dumpable_context (callable, optional): An optional keyword argument to custom specify
- how to convert the custom json dumpable representation of the context back to the
- original context. This is used for json deserialization, which is being used in
- :mod:`torch.export` right now.
- """
- _private_register_pytree_node(
- cls,
- flatten_fn,
- unflatten_fn,
- serialized_type_name=serialized_type_name,
- to_dumpable_context=to_dumpable_context,
- from_dumpable_context=from_dumpable_context,
- )
- def _private_register_pytree_node(
- cls: Type[Any],
- flatten_fn: FlattenFunc,
- unflatten_fn: UnflattenFunc,
- *,
- serialized_type_name: Optional[str] = None,
- to_dumpable_context: Optional[ToDumpableContextFn] = None,
- from_dumpable_context: Optional[FromDumpableContextFn] = None,
- ) -> None:
- """This is an internal function that is used to register a pytree node type
- for the C++ pytree only. End-users should use :func:`register_pytree_node`
- instead.
- """
- # TODO(XuehaiPan): remove this condition when we make Python pytree out-of-box support
- # PyStructSequence types
- if not optree.is_structseq_class(cls):
- optree.register_pytree_node(
- cls,
- flatten_fn,
- _reverse_args(unflatten_fn),
- namespace="torch",
- )
- def tree_flatten(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> Tuple[List[Any], TreeSpec]:
- """Flatten a pytree.
- See also :func:`tree_unflatten`.
- The flattening order (i.e., the order of elements in the output list) is deterministic,
- corresponding to a left-to-right depth-first tree traversal.
- >>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
- >>> tree_flatten(tree)
- ([1, 2, 3, 4, None, 5], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf))
- >>> tree_flatten(1)
- ([1], PyTreeSpec(*, NoneIsLeaf))
- >>> tree_flatten(None)
- ([None], PyTreeSpec(*, NoneIsLeaf))
- For unordered dictionaries, :class:`dict` and :class:`collections.defaultdict`, the order is
- dependent on the **sorted** keys in the dictionary. Please use :class:`collections.OrderedDict`
- if you want to keep the keys in the insertion order.
- >>> from collections import OrderedDict
- >>> tree = OrderedDict([('b', (2, [3, 4])), ('a', 1), ('c', None), ('d', 5)])
- >>> tree_flatten(tree)
- ([2, 3, 4, 1, None, 5], PyTreeSpec(OrderedDict([('b', (*, [*, *])), ('a', *), ('c', *), ('d', *)]), NoneIsLeaf))
- Args:
- tree (pytree): A pytree to flatten.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A pair ``(leaves, treespec)`` where the first element is a list of leaf values and the
- second element is a treespec representing the structure of the pytree.
- """
- return optree.tree_flatten( # type: ignore[return-value]
- tree,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- def tree_unflatten(leaves: Iterable[Any], treespec: TreeSpec) -> PyTree:
- """Reconstruct a pytree from the treespec and the leaves.
- The inverse of :func:`tree_flatten`.
- >>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
- >>> leaves, treespec = tree_flatten(tree)
- >>> tree == tree_unflatten(leaves, treespec)
- True
- Args:
- leaves (iterable): The list of leaves to use for reconstruction. The list must match the
- number of leaves of the treespec.
- treespec (TreeSpec): The treespec to reconstruct.
- Returns:
- The reconstructed pytree, containing the ``leaves`` placed in the structure described by
- ``treespec``.
- """
- if not isinstance(treespec, TreeSpec):
- raise TypeError(
- f"tree_unflatten(values, spec): Expected `spec` to be instance of "
- f"TreeSpec but got item of type {type(treespec)}."
- )
- return optree.tree_unflatten(treespec, leaves) # type: ignore[arg-type]
- def tree_iter(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> Iterable[Any]:
- """Get an iterator over the leaves of a pytree.
- See also :func:`tree_flatten`.
- >>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
- >>> list(tree_iter(tree))
- [1, 2, 3, 4, None, 5]
- >>> list(tree_iter(1))
- [1]
- >>> list(tree_iter(None))
- [None]
- Args:
- tree (pytree): A pytree to flatten.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- An iterator over the leaf values.
- """
- return optree.tree_iter(
- tree,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- def tree_leaves(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> List[Any]:
- """Get the leaves of a pytree.
- See also :func:`tree_flatten`.
- >>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
- >>> tree_leaves(tree)
- [1, 2, 3, 4, None, 5]
- >>> tree_leaves(1)
- [1]
- >>> tree_leaves(None)
- [None]
- Args:
- tree (pytree): A pytree to flatten.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A list of leaf values.
- """
- return optree.tree_leaves(
- tree,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- def tree_structure(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> TreeSpec:
- """Get the treespec for a pytree.
- See also :func:`tree_flatten`.
- >>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
- >>> tree_structure(tree)
- PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf)
- >>> tree_structure(1)
- PyTreeSpec(*, NoneIsLeaf)
- >>> tree_structure(None)
- PyTreeSpec(*, NoneIsLeaf)
- Args:
- tree (pytree): A pytree to flatten.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A treespec object representing the structure of the pytree.
- """
- return optree.tree_structure( # type: ignore[return-value]
- tree,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- def tree_map(
- func: Callable[..., Any],
- tree: PyTree,
- *rests: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- """Map a multi-input function over pytree args to produce a new pytree.
- See also :func:`tree_map_`.
- >>> tree_map(lambda x: x + 1, {'x': 7, 'y': (42, 64)})
- {'x': 8, 'y': (43, 65)}
- >>> tree_map(lambda x: x is None, {'x': 7, 'y': (42, 64), 'z': None})
- {'x': False, 'y': (False, False), 'z': True}
- If multiple inputs are given, the structure of the tree is taken from the first input;
- subsequent inputs need only have ``tree`` as a prefix:
- >>> tree_map(lambda x, y: [x] + y, [5, 6], [[7, 9], [1, 2]])
- [[5, 7, 9], [6, 1, 2]]
- Args:
- func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
- corresponding leaves of the pytrees.
- tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
- argument to function ``func``.
- rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
- ``tree`` or has ``tree`` as a prefix.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A new pytree with the same structure as ``tree`` but with the value at each leaf given by
- ``func(x, *xs)`` where ``x`` is the value at the corresponding leaf in ``tree`` and ``xs``
- is the tuple of values at corresponding nodes in ``rests``.
- """
- return optree.tree_map(
- func,
- tree,
- *rests,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- def tree_map_(
- func: Callable[..., Any],
- tree: PyTree,
- *rests: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- """Like :func:`tree_map`, but do an inplace call on each leaf and return the original tree.
- See also :func:`tree_map`.
- Args:
- func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
- corresponding leaves of the pytrees.
- tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
- argument to function ``func``.
- rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
- ``tree`` or has ``tree`` as a prefix.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- The original ``tree`` with the value at each leaf is given by the side-effect of function
- ``func(x, *xs)`` (not the return value) where ``x`` is the value at the corresponding leaf
- in ``tree`` and ``xs`` is the tuple of values at values at corresponding nodes in ``rests``.
- """
- return optree.tree_map_(
- func,
- tree,
- *rests,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- Type2 = Tuple[Type[T], Type[S]]
- Type3 = Tuple[Type[T], Type[S], Type[U]]
- if sys.version_info >= (3, 10):
- TypeAny = Union[Type[Any], Tuple[Type[Any], ...], types.UnionType]
- else:
- TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
- Fn2 = Callable[[Union[T, S]], R]
- Fn3 = Callable[[Union[T, S, U]], R]
- Fn = Callable[[T], R]
- FnAny = Callable[[Any], R]
- MapOnlyFn = Callable[[T], Callable[[Any], Any]]
- # These specializations help with type inference on the lambda passed to this
- # function
- @overload
- def map_only(__type_or_types_or_pred: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
- ...
- @overload
- def map_only(__type_or_types_or_pred: Type3[T, S, U]) -> MapOnlyFn[Fn3[T, S, U, Any]]:
- ...
- @overload
- def map_only(__type_or_types_or_pred: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
- ...
- # This specialization is needed for the implementations below that call
- @overload
- def map_only(__type_or_types_or_pred: TypeAny) -> MapOnlyFn[FnAny[Any]]:
- ...
- @overload
- def map_only(__type_or_types_or_pred: Callable[[Any], bool]) -> MapOnlyFn[FnAny[Any]]:
- ...
- def map_only(
- __type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]]
- ) -> MapOnlyFn[FnAny[Any]]:
- """
- Suppose you are writing a tree_map over tensors, leaving everything
- else unchanged. Ordinarily you would have to write:
- def go(t):
- if isinstance(t, Tensor):
- return ...
- else:
- return t
- With this function, you only need to write:
- @map_only(Tensor)
- def go(t):
- return ...
- You can also directly use 'tree_map_only'
- """
- if isinstance(__type_or_types_or_pred, (type, tuple)) or (
- sys.version_info >= (3, 10)
- and isinstance(__type_or_types_or_pred, types.UnionType)
- ):
- def pred(x: Any) -> bool:
- return isinstance(x, __type_or_types_or_pred) # type: ignore[arg-type]
- elif callable(__type_or_types_or_pred):
- pred = __type_or_types_or_pred # type: ignore[assignment]
- else:
- raise TypeError("Argument must be a type, a tuple of types, or a callable.")
- def wrapper(func: Callable[[T], Any]) -> Callable[[Any], Any]:
- @functools.wraps(func)
- def wrapped(x: T) -> Any:
- if pred(x):
- return func(x)
- return x
- return wrapped
- return wrapper
- @overload
- def tree_map_only(
- __type_or_types_or_pred: Type[T],
- func: Fn[T, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only(
- __type_or_types_or_pred: Type2[T, S],
- func: Fn2[T, S, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only(
- __type_or_types_or_pred: Type3[T, S, U],
- func: Fn3[T, S, U, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only(
- __type_or_types_or_pred: Callable[[Any], bool],
- func: FnAny[Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- def tree_map_only(
- __type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
- func: FnAny[Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- return tree_map(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
- @overload
- def tree_map_only_(
- __type_or_types_or_pred: Type[T],
- func: Fn[T, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only_(
- __type_or_types_or_pred: Type2[T, S],
- func: Fn2[T, S, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only_(
- __type_or_types_or_pred: Type3[T, S, U],
- func: Fn3[T, S, U, Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- @overload
- def tree_map_only_(
- __type_or_types_or_pred: Callable[[Any], bool],
- func: FnAny[Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- ...
- def tree_map_only_(
- __type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
- func: FnAny[Any],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- return tree_map_(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
- def tree_all(
- pred: Callable[[Any], bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- flat_args = tree_iter(tree, is_leaf=is_leaf)
- return all(map(pred, flat_args))
- def tree_any(
- pred: Callable[[Any], bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- flat_args = tree_iter(tree, is_leaf=is_leaf)
- return any(map(pred, flat_args))
- @overload
- def tree_all_only(
- __type_or_types: Type[T],
- pred: Fn[T, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- @overload
- def tree_all_only(
- __type_or_types: Type2[T, S],
- pred: Fn2[T, S, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- @overload
- def tree_all_only(
- __type_or_types: Type3[T, S, U],
- pred: Fn3[T, S, U, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- def tree_all_only(
- __type_or_types: TypeAny,
- pred: FnAny[bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- flat_args = tree_iter(tree, is_leaf=is_leaf)
- return all(pred(x) for x in flat_args if isinstance(x, __type_or_types))
- @overload
- def tree_any_only(
- __type_or_types: Type[T],
- pred: Fn[T, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- @overload
- def tree_any_only(
- __type_or_types: Type2[T, S],
- pred: Fn2[T, S, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- @overload
- def tree_any_only(
- __type_or_types: Type3[T, S, U],
- pred: Fn3[T, S, U, bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- ...
- def tree_any_only(
- __type_or_types: TypeAny,
- pred: FnAny[bool],
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> bool:
- flat_args = tree_iter(tree, is_leaf=is_leaf)
- return any(pred(x) for x in flat_args if isinstance(x, __type_or_types))
- def broadcast_prefix(
- prefix_tree: PyTree,
- full_tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> List[Any]:
- """Return a list of broadcasted leaves in ``prefix_tree`` to match the number of leaves in ``full_tree``.
- If a ``prefix_tree`` is a prefix of a ``full_tree``, this means the ``full_tree`` can be
- constructed by replacing the leaves of ``prefix_tree`` with appropriate **subtrees**.
- This function returns a list of leaves with the same size as ``full_tree``. The leaves are
- replicated from ``prefix_tree``. The number of replicas is determined by the corresponding
- subtree in ``full_tree``.
- >>> broadcast_prefix(1, [1, 2, 3])
- [1, 1, 1]
- >>> broadcast_prefix([1, 2, 3], [1, 2, 3])
- [1, 2, 3]
- >>> broadcast_prefix([1, 2, 3], [1, 2, 3, 4])
- Traceback (most recent call last):
- ...
- ValueError: list arity mismatch; expected: 3, got: 4; list: [1, 2, 3, 4].
- >>> broadcast_prefix([1, 2, 3], [1, 2, (3, 4)])
- [1, 2, 3, 3]
- >>> broadcast_prefix([1, 2, 3], [1, 2, {'a': 3, 'b': 4, 'c': (None, 5)}])
- [1, 2, 3, 3, 3, 3]
- Args:
- prefix_tree (pytree): A pytree with the same structure as a prefix of ``full_tree``.
- full_tree (pytree): A pytree with the same structure as a suffix of ``prefix_tree``.
- is_leaf (callable, optional): An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A list of leaves in ``prefix_tree`` broadcasted to match the number of leaves in ``full_tree``.
- """
- return optree.broadcast_prefix(
- prefix_tree,
- full_tree,
- is_leaf=is_leaf,
- none_is_leaf=True,
- namespace="torch",
- )
- # Broadcasts a pytree to the provided TreeSpec and returns the flattened
- # values. If this is not possible, then this function returns None.
- #
- # For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
- # would return [0, 0]. This is useful for part of the vmap implementation:
- # a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
- # broadcastable to the tree structure of `inputs` and we use
- # _broadcast_to_and_flatten to check this.
- def _broadcast_to_and_flatten(
- tree: PyTree,
- treespec: TreeSpec,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> Optional[List[Any]]:
- assert isinstance(treespec, TreeSpec)
- full_tree = tree_unflatten([0] * treespec.num_leaves, treespec)
- try:
- return broadcast_prefix(tree, full_tree, is_leaf=is_leaf)
- except ValueError:
- return None
- def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
- """Serialize a treespec to a JSON string."""
- if not isinstance(treespec, TreeSpec):
- raise TypeError(
- f"treespec_dumps(spec): Expected `spec` to be instance of "
- f"TreeSpec but got item of type {type(treespec)}."
- )
- from ._pytree import (
- tree_structure as _tree_structure,
- treespec_dumps as _treespec_dumps,
- )
- orig_treespec = _tree_structure(tree_unflatten([0] * treespec.num_leaves, treespec))
- return _treespec_dumps(orig_treespec, protocol=protocol)
- def treespec_loads(serialized: str) -> TreeSpec:
- """Deserialize a treespec from a JSON string."""
- from ._pytree import (
- tree_unflatten as _tree_unflatten,
- treespec_loads as _treespec_loads,
- )
- orig_treespec = _treespec_loads(serialized)
- dummy_tree = _tree_unflatten([0] * orig_treespec.num_leaves, orig_treespec)
- treespec = tree_structure(dummy_tree)
- return treespec
- class _DummyLeaf:
- def __repr__(self) -> str:
- return "*"
- def treespec_pprint(treespec: TreeSpec) -> str:
- dummy_tree = tree_unflatten(
- [_DummyLeaf() for _ in range(treespec.num_leaves)],
- treespec,
- )
- return repr(dummy_tree)
- class LeafSpecMeta(type(TreeSpec)): # type: ignore[misc]
- def __instancecheck__(self, instance: object) -> bool:
- return isinstance(instance, TreeSpec) and instance.is_leaf()
- class LeafSpec(TreeSpec, metaclass=LeafSpecMeta):
- def __new__(cls) -> "LeafSpec":
- return optree.treespec_leaf(none_is_leaf=True) # type: ignore[return-value]
- def tree_flatten_with_path(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> Tuple[List[Tuple[KeyPath, Any]], TreeSpec]:
- """Flattens a pytree like :func:`tree_flatten`, but also returns each leaf's key path.
- Args:
- tree: a pytree to flatten. If it contains a custom type, that type must be
- registered with an appropriate `tree_flatten_with_path_fn` when registered
- with :func:`register_pytree_node`.
- is_leaf: An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A tuple where the first element is a list of (key path, leaf) pairs, and the
- second element is a :class:`TreeSpec` representing the structure of the flattened
- tree.
- """
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
- def tree_leaves_with_path(
- tree: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> List[Tuple[KeyPath, Any]]:
- """Gets the leaves of a pytree like ``tree_leaves`` and returns each leaf's key path.
- Args:
- tree: a pytree. If it contains a custom type, that type must be
- registered with an appropriate `tree_flatten_with_path_fn` when registered
- with :func:`register_pytree_node`.
- is_leaf: An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns:
- A list of (key path, leaf) pairs.
- """
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
- def tree_map_with_path(
- func: Callable[..., Any],
- tree: PyTree,
- *rests: PyTree,
- is_leaf: Optional[Callable[[PyTree], bool]] = None,
- ) -> PyTree:
- """Like :func:`tree_map`, but the provided callable takes an additional key path argument.
- Args:
- func: A function that takes ``2 + len(rests)`` arguments, to be applied at the
- corresponding leaves of the pytrees. The first positional argument
- to ``func`` is the key path of the leaf in question. The second
- positional argument is the value of the leaf.
- tree: A pytree to be mapped over, with each leaf providing the first positional
- argument to function ``func``.
- rests: A tuple of pytrees, each of which has the same structure as
- ``tree`` or has ``tree`` as a prefix.
- is_leaf: An extra leaf predicate function that will be called at each
- flattening step. The function should have a single argument with signature
- ``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
- as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
- leaf or not. If the function is not specified, the default pytree registry will be used.
- Returns
- A new pytree with the same structure as ``tree`` but with the value at each leaf given by
- ``func(keypath, x, *xs)`` where ``keypath`` is the key path at the
- corresponding leaf in ``tree``, ``x`` is the value at that leaf, and
- ``xs`` is the tuple of values at corresponding nodes in ``rests``.
- """
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
- def keystr(kp: KeyPath) -> str:
- """Given a key path, return a pretty-printed representation."""
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
- def key_get(obj: Any, kp: KeyPath) -> Any:
- """Given an object and a key path, return the value at the key path."""
- raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|