| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from collections import OrderedDict
- import torch
- from packaging import version
- from torch import Tensor, nn
- from .utils import logging
- logger = logging.get_logger(__name__)
- class PytorchGELUTanh(nn.Module):
- """
- A fast C implementation of the tanh approximation of the GeLU activation function. See
- https://arxiv.org/abs/1606.08415.
- This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
- match due to rounding errors.
- """
- def __init__(self):
- super().__init__()
- if version.parse(torch.__version__) < version.parse("1.12.0"):
- raise ImportError(
- f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
- "PytorchGELUTanh. Please upgrade torch."
- )
- def forward(self, input: Tensor) -> Tensor:
- return nn.functional.gelu(input, approximate="tanh")
- class NewGELUActivation(nn.Module):
- """
- Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
- the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
- """
- def forward(self, input: Tensor) -> Tensor:
- return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
- class GELUActivation(nn.Module):
- """
- Original Implementation of the GELU activation function in Google BERT repo when initially created. For
- information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
- torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
- Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
- """
- def __init__(self, use_gelu_python: bool = False):
- super().__init__()
- if use_gelu_python:
- self.act = self._gelu_python
- else:
- self.act = nn.functional.gelu
- def _gelu_python(self, input: Tensor) -> Tensor:
- return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
- def forward(self, input: Tensor) -> Tensor:
- return self.act(input)
- class FastGELUActivation(nn.Module):
- """
- Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
- """
- def forward(self, input: Tensor) -> Tensor:
- return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
- class QuickGELUActivation(nn.Module):
- """
- Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
- """
- def forward(self, input: Tensor) -> Tensor:
- return input * torch.sigmoid(1.702 * input)
- class ClippedGELUActivation(nn.Module):
- """
- Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
- it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
- https://arxiv.org/abs/2004.09602.
- Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
- initially created.
- For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
- torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
- """
- def __init__(self, min: float, max: float):
- if min > max:
- raise ValueError(f"min should be < max (got min: {min}, max: {max})")
- super().__init__()
- self.min = min
- self.max = max
- def forward(self, x: Tensor) -> Tensor:
- return torch.clip(gelu(x), self.min, self.max)
- class AccurateGELUActivation(nn.Module):
- """
- Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
- https://github.com/hendrycks/GELUs
- Implemented along with MEGA (Moving Average Equipped Gated Attention)
- """
- def __init__(self):
- super().__init__()
- self.precomputed_constant = math.sqrt(2 / math.pi)
- def forward(self, input: Tensor) -> Tensor:
- return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
- class MishActivation(nn.Module):
- """
- See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
- visit the official repository for the paper: https://github.com/digantamisra98/Mish
- """
- def __init__(self):
- super().__init__()
- if version.parse(torch.__version__) < version.parse("1.9.0"):
- self.act = self._mish_python
- else:
- self.act = nn.functional.mish
- def _mish_python(self, input: Tensor) -> Tensor:
- return input * torch.tanh(nn.functional.softplus(input))
- def forward(self, input: Tensor) -> Tensor:
- return self.act(input)
- class LinearActivation(nn.Module):
- """
- Applies the linear activation function, i.e. forwarding input directly to output.
- """
- def forward(self, input: Tensor) -> Tensor:
- return input
- class LaplaceActivation(nn.Module):
- """
- Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
- https://arxiv.org/abs/2209.10655
- Inspired by squared relu, but with bounded range and gradient for better stability
- """
- def forward(self, input, mu=0.707107, sigma=0.282095):
- input = (input - mu).div(sigma * math.sqrt(2.0))
- return 0.5 * (1.0 + torch.erf(input))
- class ReLUSquaredActivation(nn.Module):
- """
- Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
- """
- def forward(self, input):
- relu_applied = nn.functional.relu(input)
- squared = torch.square(relu_applied)
- return squared
- class ClassInstantier(OrderedDict):
- def __getitem__(self, key):
- content = super().__getitem__(key)
- cls, kwargs = content if isinstance(content, tuple) else (content, {})
- return cls(**kwargs)
- ACT2CLS = {
- "gelu": GELUActivation,
- "gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
- "gelu_fast": FastGELUActivation,
- "gelu_new": NewGELUActivation,
- "gelu_python": (GELUActivation, {"use_gelu_python": True}),
- "gelu_pytorch_tanh": PytorchGELUTanh,
- "gelu_accurate": AccurateGELUActivation,
- "laplace": LaplaceActivation,
- "leaky_relu": nn.LeakyReLU,
- "linear": LinearActivation,
- "mish": MishActivation,
- "quick_gelu": QuickGELUActivation,
- "relu": nn.ReLU,
- "relu2": ReLUSquaredActivation,
- "relu6": nn.ReLU6,
- "sigmoid": nn.Sigmoid,
- "silu": nn.SiLU,
- "swish": nn.SiLU,
- "tanh": nn.Tanh,
- }
- ACT2FN = ClassInstantier(ACT2CLS)
- def get_activation(activation_string):
- if activation_string in ACT2FN:
- return ACT2FN[activation_string]
- else:
- raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
- # For backwards compatibility with: from activations import gelu_python
- gelu_python = get_activation("gelu_python")
- gelu_new = get_activation("gelu_new")
- gelu = get_activation("gelu")
- gelu_fast = get_activation("gelu_fast")
- quick_gelu = get_activation("quick_gelu")
- silu = get_activation("silu")
- mish = get_activation("mish")
- linear_act = get_activation("linear")
|