| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- #!/usr/bin/env python
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .agents import BASE_PYTHON_TOOLS
- from .python_interpreter import InterpreterError, evaluate
- ### Fake tools for test
- def classifier(text, labels):
- return f"This is the classification of {text} along {labels}."
- def translator(text, src_lang, tgt_lang):
- return f"This is the translation of {text} from {src_lang} to {tgt_lang}."
- def speaker(text):
- return f"This is actually a sound reading {text}."
- def transcriber(audio):
- if "sound" not in audio:
- raise ValueError(f"`audio` ({audio}) is not a sound.")
- return f"This is the transcribed text from {audio}."
- def image_generator(prompt):
- return f"This is actually an image representing {prompt}."
- def image_captioner(image):
- if "image" not in image:
- raise ValueError(f"`image` ({image}) is not an image.")
- return f"This is a description of {image}."
- def image_transformer(image, prompt):
- if "image" not in image:
- raise ValueError(f"`image` ({image}) is not an image.")
- return f"This is a transformation of {image} according to {prompt}."
- def question_answerer(text, question):
- return f"This is the answer to {question} from {text}."
- def image_qa(image, question):
- if "image" not in image:
- raise ValueError(f"`image` ({image}) is not an image.")
- return f"This is the answer to {question} from {image}."
- def text_downloader(url):
- return f"This is the content of {url}."
- def summarizer(text):
- return f"This is a summary of {text}."
- def video_generator(prompt, seconds=2):
- return f"A video of {prompt}"
- def document_qa(image, question):
- return f"This is the answer to {question} from the document {image}."
- def image_segmenter(image, prompt):
- return f"This is the mask of {prompt} in {image}"
- TEST_TOOLS = {
- "text_classifier": classifier,
- "translator": translator,
- "text_reader": speaker,
- "summarizer": summarizer,
- "transcriber": transcriber,
- "image_generator": image_generator,
- "image_captioner": image_captioner,
- "image_transformer": image_transformer,
- "text_qa": question_answerer,
- "text_downloader": text_downloader,
- "image_qa": image_qa,
- "video_generator": video_generator,
- "document_qa": document_qa,
- "image_segmenter": image_segmenter,
- }
- class Problem:
- """
- A class regrouping all the information to solve a problem on which we will evaluate agents.
- Args:
- task (`str` ou `list[str]`):
- One or several descriptions of the task to perform. If a list, it should contain variations on the
- phrasing, but for the same task.
- inputs (`list[str]` or `dict[str, str]`):
- The inputs that will be fed to the tools. For this testing environment, only strings are accepted as
- values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of
- inputs expected (the value used will be `<<input_name>>` in this case).
- answer (`str` or `list[str]`):
- The theoretical answer (or list of possible valid answers) to the problem, as code.
- """
- def __init__(self, task, inputs, answer):
- self.task = task
- self.inputs = inputs
- self.answer = answer
- ### The list of problems the agent will be evaluated on.
- EVALUATION_TASKS = [
- Problem(
- task=[
- "Is the following `text` (in Spanish) positive or negative?",
- "Is the text in the variable `text` (in Spanish) positive or negative?",
- "Translate the following `text` from Spanish to English then tell me if its positive or negative.",
- ],
- inputs=["text"],
- answer="""text_classifier(translator(text, src_lang="Spanish", tgt_lang="English"), labels=["positive", "negative"])""",
- ),
- Problem(
- task=[
- "Tell me out loud what the `image` contains.",
- "Describe the following `image` out loud.",
- "Find what is in the picture stored in `image` then read it out loud.",
- ],
- inputs=["image"],
- answer=[
- "text_reader(image_captioner(image))",
- "text_reader(image_qa(image, question='What is in the image?'))",
- ],
- ),
- Problem(
- task=[
- "Generate an image from the text given in `text_input`. Then transform it according to the text in `prompt`.",
- "Use the following `text_input` to generate an image, then transform it by using the text in `prompt`.",
- ],
- inputs=["text_input", "prompt"],
- answer="image_transformer(image_generator(text_input), prompt)",
- ),
- Problem(
- task=[
- "Download the content of `url`, summarize it then generate an image from its content.",
- "Use a summary of the web page at `url` to generate an image.",
- "Summarize the content of the web page at `url`, and use the result to generate an image.",
- ],
- inputs=["url"],
- answer="image_generator(summarizer(text_downloader(url)))",
- ),
- Problem(
- task=[
- "Transform the following `image` using the prompt in `text`. The prompt is in Spanish.",
- "Use the text prompt in `text` (in Spanish) to transform the following `image`.",
- "Translate the `text` from Spanish to English then use it to transform the picture in `image`.",
- ],
- inputs=["text", "image"],
- answer="image_transformer(image, translator(text, src_lang='Spanish', tgt_lang='English'))",
- ),
- Problem(
- task=[
- "Download the content of `url`, summarize it then read it out loud to me.",
- "Read me a summary of the web page at `url`.",
- ],
- inputs=["url"],
- answer="text_reader(summarizer(text_downloader(url)))",
- ),
- Problem(
- task=[
- "Generate an image from the text given in `text_input`.",
- ],
- inputs=["text_input"],
- answer="image_generator(text_input)",
- ),
- Problem(
- task=[
- "Replace the beaver in the `image` by the `prompt`.",
- "Transform the `image` so that it contains the `prompt`.",
- "Use `prompt` to transform this `image`.",
- ],
- inputs=["image", "prompt"],
- answer="image_transformer(image, prompt)",
- ),
- Problem(
- task=[
- "Provide me the summary of the `text`, then read it to me before transcribing it and translating it in French.",
- "Summarize `text`, read it out loud then transcribe the audio and translate it in French.",
- "Read me a summary of the `text` out loud. Transcribe this and translate it in French.",
- ],
- inputs=["text"],
- answer="translator(transcriber(text_reader(summarizer(text))), src_lang='English', tgt_lang='French')",
- ),
- Problem(
- task=["Generate a video of the `prompt`", "Animate a `prompt`", "Make me a short video using `prompt`."],
- inputs={"prompt": "A lobster swimming"},
- answer="video_generator('A lobster swimming')",
- ),
- Problem(
- task=[
- "Download the following file `url`, summarize it in a few words and generate a video from it."
- "Fetch the file at this `url`, summarize it, and create an animation out of it."
- ],
- inputs=["url"],
- answer="video_generator(summarizer(text_downloader(url)))",
- ),
- ]
- def get_theoretical_tools(agent_answer, theoretical_answer, code_answer):
- if not isinstance(theoretical_answer, list):
- return {name for name in TEST_TOOLS if name in code_answer}
- if isinstance(agent_answer, dict):
- for one_answer, one_code in zip(theoretical_answer, code_answer):
- if one_answer in agent_answer.values():
- return {name for name in TEST_TOOLS if name in one_code}
- for one_answer, one_code in zip(theoretical_answer, code_answer):
- if agent_answer == one_answer:
- return {name for name in TEST_TOOLS if name in one_code}
- return {name for name in TEST_TOOLS if name in code_answer[0]}
- def evaluate_code(code, inputs=None, state=None, verbose=False, return_interpretor_error=False):
- tools = BASE_PYTHON_TOOLS.copy()
- for name, tool in TEST_TOOLS.items():
- if name not in code:
- continue
- tools[name] = tool
- if isinstance(inputs, dict):
- inputs = inputs.copy()
- elif inputs is not None:
- inputs = {inp: f"<<{inp}>>" for inp in inputs}
- if state is not None:
- state.update(inputs)
- else:
- state = inputs
- try:
- return evaluate(code, tools, state)
- except InterpreterError as e:
- return str(e)
- except Exception as e:
- if verbose:
- print(e)
- return None
- def score_code(agent_answer, theoretical_answer, verbose: bool = False):
- if verbose:
- print(agent_answer, theoretical_answer)
- theoretical_answer = theoretical_answer if isinstance(theoretical_answer, list) else [theoretical_answer]
- if agent_answer in theoretical_answer:
- if verbose:
- print("Perfect!")
- return 1
- elif isinstance(agent_answer, dict) and any(v in theoretical_answer for v in agent_answer.values()):
- if verbose:
- print("Almsot perfect, result in state!")
- return 0.75
- else:
- if verbose:
- print("Result is not the right one but code executed.")
- return 0.3
- def evaluate_one_result(code, agent_answer, theoretical_answer, answer, verbose=False):
- tools_in_code = {name for name in TEST_TOOLS if f"`{name}`" in code}
- theoretical_tools = get_theoretical_tools(agent_answer, theoretical_answer, answer)
- if tools_in_code == theoretical_tools:
- tool_selection_score = 1.0
- tool_selection_errors = None
- else:
- missing_tools = len(theoretical_tools - tools_in_code)
- unexpected_tools = len(tools_in_code - theoretical_tools)
- tool_selection_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools)
- tool_selection_errors = {
- "selected_tools": tools_in_code,
- "theoretical_tools": theoretical_tools,
- }
- tools_in_code = {name for name in TEST_TOOLS if name in code}
- if tools_in_code == theoretical_tools:
- tool_used_score = 1.0
- tool_used_errors = None
- else:
- missing_tools = len(theoretical_tools - tools_in_code)
- unexpected_tools = len(tools_in_code - theoretical_tools)
- tool_used_score = max(0, 1.0 - 0.25 * missing_tools - 0.25 * unexpected_tools)
- tool_used_errors = {
- "selected_tools": tools_in_code,
- "theoretical_tools": theoretical_tools,
- }
- score = score_code(agent_answer, theoretical_answer, verbose=verbose)
- if score < 1.0:
- code_errors = {
- "code_produced": code,
- "evaluation": agent_answer,
- "theoretical_answer": theoretical_answer,
- }
- else:
- code_errors = None
- return (tool_selection_score, tool_used_score, score), (tool_selection_errors, tool_used_errors, code_errors)
- def evaluate_agent(agent, batch_size=8, verbose=False, return_errors=False):
- """
- Evaluates a new agent on all `EVALUATION_TASKS`.
- Example:
- ```py
- agent = NewOpenAiAgent(model="text-davinci-003", api_key=your_api_key)
- bads = new_evaluate_agent(agent)
- for bad in bads:
- print(bad)
- ```
- """
- # Sanity check
- agent_tools = set(agent.toolbox.keys())
- if agent_tools != set(TEST_TOOLS):
- missing_tools = set(TEST_TOOLS) - agent_tools
- unexpected_tools = set(agent_tools) - TEST_TOOLS
- raise ValueError(
- f"Fix the test tools in the evaluate_agent module. Tools mising: {missing_tools}. Extra tools: {unexpected_tools}."
- )
- eval_tasks = []
- eval_idx = []
- for idx, pb in enumerate(EVALUATION_TASKS):
- if isinstance(pb.task, list):
- eval_tasks.extend(pb.task)
- eval_idx.extend([idx] * len(pb.task))
- else:
- eval_tasks.append(pb.task)
- eval_idx.append(idx)
- tool_selection_score = 0
- tool_used_score = 0
- code_score = 0
- if return_errors:
- tool_selection_errors = {}
- tool_used_errors = {}
- code_errors = {}
- for start_idx in range(0, len(eval_tasks), batch_size):
- end_idx = min(start_idx + batch_size, len(eval_tasks))
- batch_tasks = eval_tasks[start_idx:end_idx]
- results = [agent.run(task, return_generated_code=True) for task in batch_tasks]
- for idx, result in enumerate(results):
- problem = EVALUATION_TASKS[eval_idx[start_idx + idx]]
- if verbose:
- print(f"====Task {start_idx + idx}====\n{batch_tasks[idx]}\n")
- code = agent.extract_action(result, split_token="Answer:")
- # Evaluate agent answer and code answer
- agent_answer = evaluate_code(code, problem.inputs, verbose=verbose)
- if isinstance(problem.answer, list):
- theoretical_answer = [evaluate_code(answer, problem.inputs) for answer in problem.answer]
- else:
- theoretical_answer = evaluate_code(problem.answer, problem.inputs)
- scores, errors = evaluate_one_result(
- code, agent_answer, theoretical_answer, problem.answer, verbose=verbose
- )
- tool_selection_score += scores[0]
- tool_used_score += scores[1]
- code_score += scores[2]
- if return_errors:
- if errors[0] is not None:
- tool_selection_errors[batch_tasks[idx]] = errors[0]
- if errors[1] is not None:
- tool_used_errors[batch_tasks[idx]] = errors[1]
- if errors[2] is not None:
- code_errors[batch_tasks[idx]] = errors[2]
- scores = {
- "tool selection score": 100 * (tool_selection_score / len(eval_tasks)),
- "tool used score": 100 * (tool_used_score / len(eval_tasks)),
- "code score": 100 * (code_score / len(eval_tasks)),
- }
- if return_errors:
- return scores, tool_selection_errors, tool_used_errors, code_errors
- else:
- return scores
|