| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- # coding=utf-8
- # Copyright 2018 The HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Benchmarking the library on inference and training in PyTorch.
- """
- import timeit
- from typing import Callable, Optional
- from ..configuration_utils import PretrainedConfig
- from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING
- from ..utils import is_py3nvml_available, is_torch_available, logging
- from .benchmark_utils import (
- Benchmark,
- Memory,
- MemorySummary,
- measure_peak_memory_cpu,
- start_memory_tracing,
- stop_memory_tracing,
- )
- if is_torch_available():
- import torch
- from .benchmark_args import PyTorchBenchmarkArguments
- if is_py3nvml_available():
- import py3nvml.py3nvml as nvml
- logger = logging.get_logger(__name__)
- class PyTorchBenchmark(Benchmark):
- args: PyTorchBenchmarkArguments
- configs: PretrainedConfig
- framework: str = "PyTorch"
- @property
- def framework_version(self):
- return torch.__version__
- def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
- _inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
- return self._measure_speed(_inference)
- def _inference_memory(
- self, model_name: str, batch_size: int, sequence_length: int
- ) -> [Memory, Optional[MemorySummary]]:
- _inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
- return self._measure_memory(_inference)
- def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
- _train = self._prepare_train_func(model_name, batch_size, sequence_length)
- return self._measure_speed(_train)
- def _train_memory(
- self, model_name: str, batch_size: int, sequence_length: int
- ) -> [Memory, Optional[MemorySummary]]:
- _train = self._prepare_train_func(model_name, batch_size, sequence_length)
- return self._measure_memory(_train)
- def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
- config = self.config_dict[model_name]
- if self.args.torchscript:
- config.torchscript = True
- has_model_class_in_config = (
- hasattr(config, "architectures")
- and isinstance(config.architectures, list)
- and len(config.architectures) > 0
- )
- if not self.args.only_pretrain_model and has_model_class_in_config:
- try:
- model_class = config.architectures[0]
- transformers_module = __import__("transformers", fromlist=[model_class])
- model_cls = getattr(transformers_module, model_class)
- model = model_cls(config)
- except ImportError:
- raise ImportError(
- f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
- " set `--only_pretrain_model` or `args.only_pretrain_model=True`."
- )
- else:
- model = MODEL_MAPPING[config.__class__](config)
- model.eval()
- model.to(self.args.device)
- # encoder-decoder has vocab size saved differently
- vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
- input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
- if self.args.fp16:
- logger.info("Running training in Mixed Precision...")
- if not self.args.is_gpu:
- raise ValueError("Mixed precision is possible only for GPU.")
- # amp seems to have memory leaks so that memory usage
- # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
- model.half()
- if self.args.torchscript:
- with torch.no_grad():
- inference_model = torch.jit.trace(model, input_ids)
- else:
- inference_model = model
- def encoder_decoder_forward():
- with torch.no_grad():
- outputs = inference_model(input_ids, decoder_input_ids=input_ids)
- return outputs
- def encoder_forward():
- with torch.no_grad():
- outputs = inference_model(input_ids)
- return outputs
- _forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
- return _forward
- def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
- config = self.config_dict[model_name]
- has_model_class_in_config = (
- hasattr(config, "architectures")
- and isinstance(config.architectures, list)
- and len(config.architectures) > 0
- )
- if not self.args.only_pretrain_model and has_model_class_in_config:
- try:
- model_class = config.architectures[0]
- transformers_module = __import__("transformers", fromlist=[model_class])
- model_cls = getattr(transformers_module, model_class)
- model = model_cls(config)
- except ImportError:
- raise ImportError(
- f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
- " set `--only_pretrain_model` or `args.only_pretrain_model=True`."
- )
- else:
- model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
- if self.args.torchscript:
- raise NotImplementedError("Training for torchscript is currently not implemented")
- else:
- train_model = model
- model.train()
- model.to(self.args.device)
- # encoder-decoder has vocab size saved differently
- vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
- input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
- if self.args.fp16:
- logger.info("Running training in Mixed Precision...")
- if not self.args.is_gpu:
- raise ValueError("Mixed precision is possible only for GPU.")
- # amp seems to have memory leaks so that memory usage
- # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
- model.half()
- def compute_loss_and_backprob_encoder():
- loss = train_model(input_ids, labels=input_ids)[0]
- loss.backward()
- return loss
- def compute_loss_and_backprob_encoder_decoder():
- loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0]
- loss.backward()
- return loss
- _train = (
- compute_loss_and_backprob_encoder_decoder
- if config.is_encoder_decoder
- else compute_loss_and_backprob_encoder
- )
- return _train
- def _measure_speed(self, func) -> float:
- try:
- if self.args.is_tpu or self.args.torchscript:
- # run additional 10 times to stabilize compilation for tpu and torchscript
- logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation")
- timeit.repeat(
- func,
- repeat=1,
- number=5,
- )
- # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
- runtimes = timeit.repeat(
- func,
- repeat=self.args.repeat,
- number=10,
- )
- if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics:
- import torch_xla.debug.metrics as met
- self.print_fn(met.metrics_report())
- return min(runtimes) / 10.0
- except RuntimeError as e:
- self.print_fn(f"Doesn't fit on GPU. {e}")
- return "N/A"
- def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
- try:
- if self.args.trace_memory_line_by_line:
- trace = start_memory_tracing("transformers")
- if self.args.is_tpu:
- # tpu
- raise NotImplementedError(
- "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with"
- " `--no-memory` or `args.memory=False`"
- )
- elif self.args.is_gpu:
- if not is_py3nvml_available():
- logger.warning(
- "py3nvml not installed, we won't log GPU memory usage. "
- "Install py3nvml (pip install py3nvml) to log information about GPU."
- )
- memory = "N/A"
- else:
- logger.info(
- "Measuring total GPU usage on GPU device. Make sure to not have additional processes running"
- " on the same GPU."
- )
- # init nvml
- nvml.nvmlInit()
- func()
- handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
- meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
- max_bytes_in_use = meminfo.used
- memory = Memory(max_bytes_in_use)
- # shutdown nvml
- nvml.nvmlShutdown()
- else:
- # cpu
- memory_bytes = measure_peak_memory_cpu(func)
- memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
- if self.args.trace_memory_line_by_line:
- summary = stop_memory_tracing(trace)
- else:
- summary = None
- return memory, summary
- except RuntimeError as e:
- self.print_fn(f"Doesn't fit on GPU. {e}")
- return "N/A", None
|