| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from argparse import ArgumentParser, Namespace
- from ..utils import logging
- from . import BaseTransformersCLICommand
- def convert_command_factory(args: Namespace):
- """
- Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
- Returns: ServeCommand
- """
- return ConvertCommand(
- args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
- )
- IMPORT_ERROR_MESSAGE = """
- transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
- TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
- """
- class ConvertCommand(BaseTransformersCLICommand):
- @staticmethod
- def register_subcommand(parser: ArgumentParser):
- """
- Register this command to argparse so it's available for the transformer-cli
- Args:
- parser: Root parser to register command-specific arguments
- """
- train_parser = parser.add_parser(
- "convert",
- help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
- )
- train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
- train_parser.add_argument(
- "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
- )
- train_parser.add_argument(
- "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
- )
- train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
- train_parser.add_argument(
- "--finetuning_task_name",
- type=str,
- default=None,
- help="Optional fine-tuning task name if the TF model was a finetuned model.",
- )
- train_parser.set_defaults(func=convert_command_factory)
- def __init__(
- self,
- model_type: str,
- tf_checkpoint: str,
- pytorch_dump_output: str,
- config: str,
- finetuning_task_name: str,
- *args,
- ):
- self._logger = logging.get_logger("transformers-cli/converting")
- self._logger.info(f"Loading model {model_type}")
- self._model_type = model_type
- self._tf_checkpoint = tf_checkpoint
- self._pytorch_dump_output = pytorch_dump_output
- self._config = config
- self._finetuning_task_name = finetuning_task_name
- def run(self):
- if self._model_type == "albert":
- try:
- from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
- convert_tf_checkpoint_to_pytorch,
- )
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "bert":
- try:
- from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
- convert_tf_checkpoint_to_pytorch,
- )
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "funnel":
- try:
- from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
- convert_tf_checkpoint_to_pytorch,
- )
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "t5":
- try:
- from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "gpt":
- from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
- convert_openai_checkpoint_to_pytorch,
- )
- convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "gpt2":
- try:
- from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
- convert_gpt2_checkpoint_to_pytorch,
- )
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- elif self._model_type == "xlnet":
- try:
- from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
- convert_xlnet_checkpoint_to_pytorch,
- )
- except ImportError:
- raise ImportError(IMPORT_ERROR_MESSAGE)
- convert_xlnet_checkpoint_to_pytorch(
- self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
- )
- elif self._model_type == "xlm":
- from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
- convert_xlm_checkpoint_to_pytorch,
- )
- convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
- elif self._model_type == "lxmert":
- from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
- convert_lxmert_checkpoint_to_pytorch,
- )
- convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
- elif self._model_type == "rembert":
- from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
- convert_rembert_tf_checkpoint_to_pytorch,
- )
- convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
- else:
- raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
|