train.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. # Copyright 2020 The HuggingFace Team. All rights reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from argparse import ArgumentParser, Namespace
  16. from ..data import SingleSentenceClassificationProcessor as Processor
  17. from ..pipelines import TextClassificationPipeline
  18. from ..utils import is_tf_available, is_torch_available, logging
  19. from . import BaseTransformersCLICommand
  20. if not is_tf_available() and not is_torch_available():
  21. raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
  22. # TF training parameters
  23. USE_XLA = False
  24. USE_AMP = False
  25. def train_command_factory(args: Namespace):
  26. """
  27. Factory function used to instantiate training command from provided command line arguments.
  28. Returns: TrainCommand
  29. """
  30. return TrainCommand(args)
  31. class TrainCommand(BaseTransformersCLICommand):
  32. @staticmethod
  33. def register_subcommand(parser: ArgumentParser):
  34. """
  35. Register this command to argparse so it's available for the transformer-cli
  36. Args:
  37. parser: Root parser to register command-specific arguments
  38. """
  39. train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
  40. train_parser.add_argument(
  41. "--train_data",
  42. type=str,
  43. required=True,
  44. help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
  45. )
  46. train_parser.add_argument(
  47. "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
  48. )
  49. train_parser.add_argument(
  50. "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
  51. )
  52. train_parser.add_argument(
  53. "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
  54. )
  55. train_parser.add_argument(
  56. "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
  57. )
  58. train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
  59. train_parser.add_argument(
  60. "--validation_split",
  61. type=float,
  62. default=0.1,
  63. help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
  64. )
  65. train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
  66. train_parser.add_argument(
  67. "--task", type=str, default="text_classification", help="Task to train the model on."
  68. )
  69. train_parser.add_argument(
  70. "--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model."
  71. )
  72. train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
  73. train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
  74. train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
  75. train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
  76. train_parser.set_defaults(func=train_command_factory)
  77. def __init__(self, args: Namespace):
  78. self.logger = logging.get_logger("transformers-cli/training")
  79. self.framework = "tf" if is_tf_available() else "torch"
  80. os.makedirs(args.output, exist_ok=True)
  81. self.output = args.output
  82. self.column_label = args.column_label
  83. self.column_text = args.column_text
  84. self.column_id = args.column_id
  85. self.logger.info(f"Loading {args.task} pipeline for {args.model}")
  86. if args.task == "text_classification":
  87. self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
  88. elif args.task == "token_classification":
  89. raise NotImplementedError
  90. elif args.task == "question_answering":
  91. raise NotImplementedError
  92. self.logger.info(f"Loading dataset from {args.train_data}")
  93. self.train_dataset = Processor.create_from_csv(
  94. args.train_data,
  95. column_label=args.column_label,
  96. column_text=args.column_text,
  97. column_id=args.column_id,
  98. skip_first_row=args.skip_first_row,
  99. )
  100. self.valid_dataset = None
  101. if args.validation_data:
  102. self.logger.info(f"Loading validation dataset from {args.validation_data}")
  103. self.valid_dataset = Processor.create_from_csv(
  104. args.validation_data,
  105. column_label=args.column_label,
  106. column_text=args.column_text,
  107. column_id=args.column_id,
  108. skip_first_row=args.skip_first_row,
  109. )
  110. self.validation_split = args.validation_split
  111. self.train_batch_size = args.train_batch_size
  112. self.valid_batch_size = args.valid_batch_size
  113. self.learning_rate = args.learning_rate
  114. self.adam_epsilon = args.adam_epsilon
  115. def run(self):
  116. if self.framework == "tf":
  117. return self.run_tf()
  118. return self.run_torch()
  119. def run_torch(self):
  120. raise NotImplementedError
  121. def run_tf(self):
  122. self.pipeline.fit(
  123. self.train_dataset,
  124. validation_data=self.valid_dataset,
  125. validation_split=self.validation_split,
  126. learning_rate=self.learning_rate,
  127. adam_epsilon=self.adam_epsilon,
  128. train_batch_size=self.train_batch_size,
  129. valid_batch_size=self.valid_batch_size,
  130. )
  131. # Save trained pipeline
  132. self.pipeline.save_pretrained(self.output)