| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from argparse import ArgumentParser, Namespace
- from ..data import SingleSentenceClassificationProcessor as Processor
- from ..pipelines import TextClassificationPipeline
- from ..utils import is_tf_available, is_torch_available, logging
- from . import BaseTransformersCLICommand
- if not is_tf_available() and not is_torch_available():
- raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
- # TF training parameters
- USE_XLA = False
- USE_AMP = False
- def train_command_factory(args: Namespace):
- """
- Factory function used to instantiate training command from provided command line arguments.
- Returns: TrainCommand
- """
- return TrainCommand(args)
- class TrainCommand(BaseTransformersCLICommand):
- @staticmethod
- def register_subcommand(parser: ArgumentParser):
- """
- Register this command to argparse so it's available for the transformer-cli
- Args:
- parser: Root parser to register command-specific arguments
- """
- train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
- train_parser.add_argument(
- "--train_data",
- type=str,
- required=True,
- help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
- )
- train_parser.add_argument(
- "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
- )
- train_parser.add_argument(
- "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
- )
- train_parser.add_argument(
- "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
- )
- train_parser.add_argument(
- "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
- )
- train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
- train_parser.add_argument(
- "--validation_split",
- type=float,
- default=0.1,
- help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
- )
- train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
- train_parser.add_argument(
- "--task", type=str, default="text_classification", help="Task to train the model on."
- )
- train_parser.add_argument(
- "--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model."
- )
- train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
- train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
- train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
- train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
- train_parser.set_defaults(func=train_command_factory)
- def __init__(self, args: Namespace):
- self.logger = logging.get_logger("transformers-cli/training")
- self.framework = "tf" if is_tf_available() else "torch"
- os.makedirs(args.output, exist_ok=True)
- self.output = args.output
- self.column_label = args.column_label
- self.column_text = args.column_text
- self.column_id = args.column_id
- self.logger.info(f"Loading {args.task} pipeline for {args.model}")
- if args.task == "text_classification":
- self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
- elif args.task == "token_classification":
- raise NotImplementedError
- elif args.task == "question_answering":
- raise NotImplementedError
- self.logger.info(f"Loading dataset from {args.train_data}")
- self.train_dataset = Processor.create_from_csv(
- args.train_data,
- column_label=args.column_label,
- column_text=args.column_text,
- column_id=args.column_id,
- skip_first_row=args.skip_first_row,
- )
- self.valid_dataset = None
- if args.validation_data:
- self.logger.info(f"Loading validation dataset from {args.validation_data}")
- self.valid_dataset = Processor.create_from_csv(
- args.validation_data,
- column_label=args.column_label,
- column_text=args.column_text,
- column_id=args.column_id,
- skip_first_row=args.skip_first_row,
- )
- self.validation_split = args.validation_split
- self.train_batch_size = args.train_batch_size
- self.valid_batch_size = args.valid_batch_size
- self.learning_rate = args.learning_rate
- self.adam_epsilon = args.adam_epsilon
- def run(self):
- if self.framework == "tf":
- return self.run_tf()
- return self.run_torch()
- def run_torch(self):
- raise NotImplementedError
- def run_tf(self):
- self.pipeline.fit(
- self.train_dataset,
- validation_data=self.valid_dataset,
- validation_split=self.validation_split,
- learning_rate=self.learning_rate,
- adam_epsilon=self.adam_epsilon,
- train_batch_size=self.train_batch_size,
- valid_batch_size=self.valid_batch_size,
- )
- # Save trained pipeline
- self.pipeline.save_pretrained(self.output)
|