| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642 |
- # coding=utf-8
- # Copyright 2018 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Utilities to convert slow tokenizers in their fast tokenizers counterparts.
- All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and
- allow to make our dependency on SentencePiece optional.
- """
- import warnings
- from typing import Dict, List, Tuple
- from packaging import version
- from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
- from tokenizers.models import BPE, Unigram, WordPiece
- from .utils import is_protobuf_available, is_sentencepiece_available, logging, requires_backends
- from .utils.import_utils import PROTOBUF_IMPORT_ERROR
- logger = logging.get_logger(__name__)
- def import_protobuf(error_message=""):
- if is_sentencepiece_available():
- from sentencepiece import sentencepiece_model_pb2
- return sentencepiece_model_pb2
- if is_protobuf_available():
- import google.protobuf
- if version.parse(google.protobuf.__version__) < version.parse("4.0.0"):
- from transformers.utils import sentencepiece_model_pb2
- else:
- from transformers.utils import sentencepiece_model_pb2_new as sentencepiece_model_pb2
- return sentencepiece_model_pb2
- else:
- raise ImportError(PROTOBUF_IMPORT_ERROR.format(error_message))
- def _get_prepend_scheme(add_prefix_space: bool, original_tokenizer) -> str:
- if add_prefix_space:
- prepend_scheme = "always"
- if not getattr(original_tokenizer, "legacy", True):
- prepend_scheme = "first"
- else:
- prepend_scheme = "never"
- return prepend_scheme
- def generate_merges(vocab, vocab_scores):
- reverse = vocab_scores is not None
- vocab_scores = dict(vocab_scores) if reverse else vocab
- merges = []
- for merge, piece_score in vocab_scores.items():
- local = []
- for index in range(1, len(merge)):
- piece_l, piece_r = merge[:index], merge[index:]
- if piece_l in vocab and piece_r in vocab:
- local.append((piece_l, piece_r, piece_score))
- local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
- merges.extend(local)
- merges = sorted(merges, key=lambda val: (val[2], len(val[0]), len(val[1])), reverse=reverse)
- merges = [(val[0], val[1]) for val in merges]
- return merges
- class SentencePieceExtractor:
- """
- Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece
- """
- def __init__(self, model: str):
- requires_backends(self, "sentencepiece")
- from sentencepiece import SentencePieceProcessor
- self.sp = SentencePieceProcessor()
- self.sp.Load(model)
- def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
- """
- By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
- order the merges with respect to the piece scores instead.
- """
- sp = self.sp
- vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
- merges = generate_merges(vocab, vocab_scores)
- return vocab, merges
- class GemmaSentencePieceExtractor(SentencePieceExtractor):
- def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
- """
- By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
- order the merges with respect to the piece scores instead.
- """
- sp = self.sp
- vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
- # there is a missing token in the vocab. We have to do this to support merges
- # "<0x09>" is the bytefallback for `\t`
- vocab["\t"] = vocab.get("<0x09>")
- merges = generate_merges(vocab, vocab_scores)
- return vocab, merges
- def check_number_comma(piece: str) -> bool:
- return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()
- class Converter:
- def __init__(self, original_tokenizer):
- self.original_tokenizer = original_tokenizer
- def converted(self) -> Tokenizer:
- raise NotImplementedError()
- class BertConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- tokenize_chinese_chars = False
- strip_accents = False
- do_lower_case = False
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:0 $A:0 {sep}:0",
- pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class SplinterConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- tokenize_chinese_chars = False
- strip_accents = False
- do_lower_case = False
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- question = str(self.original_tokenizer.question_token)
- dot = "."
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- question_token_id = self.original_tokenizer.question_token_id
- dot_token_id = self.original_tokenizer.convert_tokens_to_ids(".")
- if self.original_tokenizer.padding_side == "right":
- pair = f"{cls}:0 $A:0 {question} {dot} {sep}:0 $B:1 {sep}:1"
- else:
- pair = f"{cls}:0 $A:0 {sep}:0 $B:1 {question} {dot} {sep}:1"
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:0 $A:0 {sep}:0",
- pair=pair,
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- (question, question_token_id),
- (dot, dot_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class FunnelConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- tokenize_chinese_chars = False
- strip_accents = False
- do_lower_case = False
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:2 $A:0 {sep}:0", # token_type_id is 2 for Funnel transformer
- pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1",
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class MPNetConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- tokenize_chinese_chars = False
- strip_accents = False
- do_lower_case = False
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:0 $A:0 {sep}:0",
- pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1", # MPNet uses two [SEP] tokens
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class OpenAIGPTConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.encoder
- merges = list(self.original_tokenizer.bpe_ranks.keys())
- unk_token = self.original_tokenizer.unk_token
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- unk_token=str(unk_token),
- end_of_word_suffix="</w>",
- fuse_unk=False,
- )
- )
- if tokenizer.token_to_id(str(unk_token)) is not None:
- tokenizer.add_special_tokens([str(unk_token)])
- tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- tokenizer.decoder = decoders.BPEDecoder(suffix="</w>")
- return tokenizer
- class GPT2Converter(Converter):
- def converted(self, vocab: Dict[str, int] = None, merges: List[Tuple[str, str]] = None) -> Tokenizer:
- if not vocab:
- vocab = self.original_tokenizer.encoder
- if not merges:
- merges = list(self.original_tokenizer.bpe_ranks)
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- )
- )
- add_prefix_space = getattr(self.original_tokenizer, "add_prefix_space", False)
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- if getattr(self.original_tokenizer, "add_bos_token", False):
- bos = self.original_tokenizer.bos_token
- bos_token_id = self.original_tokenizer.bos_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{bos}:0 $A:0",
- pair=f"{bos}:0 $A:0 $B:1",
- special_tokens=[
- (bos, bos_token_id),
- ],
- )
- else:
- # XXX trim_offsets=False actually means this post_processor doesn't
- # really do anything.
- tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
- return tokenizer
- class HerbertConverter(Converter):
- def converted(self) -> Tokenizer:
- tokenizer_info_str = "#version:"
- token_suffix = "</w>"
- vocab = self.original_tokenizer.encoder
- merges = list(self.original_tokenizer.bpe_ranks.keys())
- if tokenizer_info_str in merges[0][0]:
- merges = merges[1:]
- tokenizer = Tokenizer(
- BPE(
- vocab,
- merges,
- dropout=None,
- unk_token=self.original_tokenizer.unk_token,
- end_of_word_suffix=token_suffix,
- )
- )
- tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False)
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix)
- tokenizer.post_processor = processors.BertProcessing(
- sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id),
- cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id),
- )
- return tokenizer
- class Qwen2Converter(Converter):
- def converted(self, vocab: Dict[str, int] = None, merges: List[Tuple[str, str]] = None) -> Tokenizer:
- if not vocab:
- vocab = self.original_tokenizer.encoder
- if not merges:
- merges = list(self.original_tokenizer.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- unk_token=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- byte_fallback=False,
- )
- )
- tokenizer.normalizer = normalizers.NFC()
- tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
- [
- pre_tokenizers.Split(
- Regex(
- r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
- ),
- behavior="isolated",
- invert=False,
- ),
- pre_tokenizers.ByteLevel(
- add_prefix_space=getattr(self.original_tokenizer, "add_prefix_space", False),
- use_regex=False,
- ),
- ]
- )
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
- return tokenizer
- class RobertaConverter(Converter):
- def converted(self) -> Tokenizer:
- ot = self.original_tokenizer
- vocab = ot.encoder
- merges = list(ot.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- )
- )
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.post_processor = processors.RobertaProcessing(
- sep=(ot.sep_token, ot.sep_token_id),
- cls=(ot.cls_token, ot.cls_token_id),
- add_prefix_space=ot.add_prefix_space,
- trim_offsets=True, # True by default on Roberta (historical)
- )
- return tokenizer
- class RoFormerConverter(Converter):
- def converted(self) -> Tokenizer:
- from .models.roformer.tokenization_utils import JiebaPreTokenizer
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- strip_accents = False
- do_lower_case = False
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=False,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:0 $A:0 {sep}:0",
- pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class DebertaConverter(Converter):
- def converted(self) -> Tokenizer:
- ot = self.original_tokenizer
- vocab = ot.encoder
- merges = list(ot.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- )
- )
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.post_processor = processors.TemplateProcessing(
- single="[CLS]:0 $A:0 [SEP]:0",
- pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
- special_tokens=[
- ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
- ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
- ],
- )
- return tokenizer
- class SpmConverter(Converter):
- handle_byte_fallback = False
- SpmExtractor = SentencePieceExtractor
- special_tokens = {}
- def __init__(self, *args):
- requires_backends(self, "protobuf")
- super().__init__(*args)
- # from .utils import sentencepiece_model_pb2 as model_pb2
- model_pb2 = import_protobuf()
- m = model_pb2.ModelProto()
- with open(self.original_tokenizer.vocab_file, "rb") as f:
- m.ParseFromString(f.read())
- self.proto = m
- if self.proto.trainer_spec.byte_fallback and not self.handle_byte_fallback:
- warnings.warn(
- "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option"
- " which is not implemented in the fast tokenizers. In practice this means that the fast version of the"
- " tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these "
- "unknown tokens into a sequence of byte tokens matching the original piece of text."
- )
- def vocab(self, proto):
- return [(piece.piece, piece.score) for piece in proto.pieces]
- def unk_id(self, proto):
- return proto.trainer_spec.unk_id
- def tokenizer(self, proto):
- model_type = proto.trainer_spec.model_type
- vocab_scores = self.vocab(proto)
- if model_type == 1:
- tokenizer = Tokenizer(
- Unigram(
- vocab_scores,
- unk_id=self.unk_id(proto),
- byte_fallback=self.handle_byte_fallback,
- )
- )
- elif model_type == 2:
- _, merges = self.SpmExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
- bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
- tokenizer = Tokenizer(
- BPE(
- bpe_vocab,
- merges,
- unk_token=proto.trainer_spec.unk_piece,
- fuse_unk=True,
- byte_fallback=self.handle_byte_fallback,
- dropout=None,
- )
- )
- else:
- raise Exception(
- "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
- )
- # control tokens are special
- # user defined symbols are not
- # both user and control tokens are AddedTokens
- # Add user defined symbols (type == 4) from sentencepiece (https://github.com/google/sentencepiece/blob/6225e08edb2577757163b3f5dbba4c0b670ef445/src/sentencepiece_model.proto#L299C29-L299C33)
- spm_added_tokens = [
- (id, p.piece, p.type == 3 or p.piece in self.special_tokens)
- for id, p in enumerate(proto.pieces)
- if p.type in [3, 4]
- ]
- tokenizer.add_tokens(
- [
- AddedToken(token, normalized=False, special=special)
- for id, token, special in sorted(spm_added_tokens, key=lambda x: x[0])
- ]
- )
- return tokenizer
- def normalizer(self, proto):
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- _normalizers = [
- normalizers.Strip(left=False, right=True), # stripping is important
- normalizers.Replace(Regex(" {2,}"), "▁"),
- ]
- if not precompiled_charsmap:
- return normalizers.Sequence(_normalizers)
- else:
- return normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap)] + _normalizers)
- def pre_tokenizer(self, replacement, add_prefix_space):
- prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
- return pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
- def post_processor(self):
- return None
- def decoder(self, replacement, add_prefix_space):
- prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
- return decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
- def converted(self) -> Tokenizer:
- tokenizer = self.tokenizer(self.proto)
- # Tokenizer assemble
- normalizer = self.normalizer(self.proto)
- if normalizer is not None:
- tokenizer.normalizer = normalizer
- replacement = "▁"
- add_prefix_space = True
- if hasattr(self.original_tokenizer, "add_prefix_space"):
- add_prefix_space = self.original_tokenizer.add_prefix_space
- pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
- if pre_tokenizer is not None:
- tokenizer.pre_tokenizer = pre_tokenizer
- tokenizer.decoder = self.decoder(replacement, add_prefix_space)
- post_processor = self.post_processor()
- if post_processor:
- tokenizer.post_processor = post_processor
- return tokenizer
- class AlbertConverter(SpmConverter):
- def vocab(self, proto):
- return [
- (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
- for piece in proto.pieces
- ]
- def normalizer(self, proto):
- list_normalizers = [
- normalizers.Replace("``", '"'),
- normalizers.Replace("''", '"'),
- ]
- if not self.original_tokenizer.keep_accents:
- list_normalizers.append(normalizers.NFKD())
- list_normalizers.append(normalizers.StripAccents())
- if self.original_tokenizer.do_lower_case:
- list_normalizers.append(normalizers.Lowercase())
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- if precompiled_charsmap:
- list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
- list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
- return normalizers.Sequence(list_normalizers)
- def post_processor(self):
- return processors.TemplateProcessing(
- single="[CLS]:0 $A:0 [SEP]:0",
- pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
- special_tokens=[
- ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
- ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
- ],
- )
- class BarthezConverter(SpmConverter):
- def unk_id(self, proto):
- unk_id = 3
- return unk_id
- def post_processor(self):
- return processors.TemplateProcessing(
- single="<s> $A </s>",
- pair="<s> $A </s> </s> $B </s>",
- special_tokens=[
- ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class CamembertConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>NOTUSED", 0.0),
- ("<pad>", 0.0),
- ("</s>NOTUSED", 0.0),
- ("<unk>", 0.0),
- ("<unk>NOTUSED", -100),
- ]
- # We down-grade the original SentencePiece by -100 to avoid using it and use our added token instead
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]]
- vocab += [("<mask>", 0.0)]
- return vocab
- def unk_id(self, proto):
- # See vocab unk position
- return 3
- def post_processor(self):
- return processors.TemplateProcessing(
- single="<s> $A </s>",
- pair="<s> $A </s> </s> $B </s>",
- special_tokens=[
- ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class DebertaV2Converter(SpmConverter):
- def pre_tokenizer(self, replacement, add_prefix_space):
- list_pretokenizers = []
- if self.original_tokenizer.split_by_punct:
- list_pretokenizers.append(pre_tokenizers.Punctuation(behavior="isolated"))
- prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
- list_pretokenizers.append(pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme))
- return pre_tokenizers.Sequence(list_pretokenizers)
- def normalizer(self, proto):
- list_normalizers = []
- if self.original_tokenizer.do_lower_case:
- list_normalizers.append(normalizers.Lowercase())
- list_normalizers.append(normalizers.Strip())
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- if precompiled_charsmap:
- list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
- list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
- return normalizers.Sequence(list_normalizers)
- def post_processor(self):
- return processors.TemplateProcessing(
- single="[CLS]:0 $A:0 [SEP]:0",
- pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
- special_tokens=[
- ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
- ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
- ],
- )
- class MBartConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>", 0.0),
- ("<pad>", 0.0),
- ("</s>", 0.0),
- ("<unk>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- vocab += [
- ("ar_AR", 0.0),
- ("cs_CZ", 0.0),
- ("de_DE", 0.0),
- ("en_XX", 0.0),
- ("es_XX", 0.0),
- ("et_EE", 0.0),
- ("fi_FI", 0.0),
- ("fr_XX", 0.0),
- ("gu_IN", 0.0),
- ("hi_IN", 0.0),
- ("it_IT", 0.0),
- ("ja_XX", 0.0),
- ("kk_KZ", 0.0),
- ("ko_KR", 0.0),
- ("lt_LT", 0.0),
- ("lv_LV", 0.0),
- ("my_MM", 0.0),
- ("ne_NP", 0.0),
- ("nl_XX", 0.0),
- ("ro_RO", 0.0),
- ("ru_RU", 0.0),
- ("si_LK", 0.0),
- ("tr_TR", 0.0),
- ("vi_VN", 0.0),
- ("zh_CN", 0.0),
- ]
- vocab += [("<mask>", 0.0)]
- return vocab
- def unk_id(self, proto):
- return 3
- def post_processor(self):
- return processors.TemplateProcessing(
- single="$A </s> en_XX",
- pair="$A $B </s> en_XX",
- special_tokens=[
- ("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class MBart50Converter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>", 0.0),
- ("<pad>", 0.0),
- ("</s>", 0.0),
- ("<unk>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)] # fmt: skip
- vocab += [("<mask>", 0.0)]
- return vocab
- def unk_id(self, proto):
- return 3
- def post_processor(self):
- return processors.TemplateProcessing(
- single="en_XX $A </s>",
- pair="en_XX $A $B </s>",
- special_tokens=[
- ("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class NllbConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>", 0.0),
- ("<pad>", 0.0),
- ("</s>", 0.0),
- ("<unk>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- return vocab
- def unk_id(self, proto):
- return 3
- def post_processor(self):
- return processors.TemplateProcessing(
- single="eng_Latn $A </s>",
- pair="eng_Latn $A $B </s>",
- special_tokens=[
- ("eng_Latn", self.original_tokenizer.convert_tokens_to_ids("eng_Latn")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class SeamlessM4TConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<pad>", 0.0),
- ("<unk>", 0.0),
- ("<s>", 0.0),
- ("</s>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- return vocab
- def unk_id(self, proto):
- return self.original_tokenizer.unk_token_id
- def post_processor(self):
- return processors.TemplateProcessing(
- single="__eng__ $A </s>",
- pair="__eng__ $A $B </s>",
- special_tokens=[
- ("__eng__", self.original_tokenizer.convert_tokens_to_ids("__eng__")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class XLMRobertaConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>", 0.0),
- ("<pad>", 0.0),
- ("</s>", 0.0),
- ("<unk>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- vocab += [("<mask>", 0.0)]
- return vocab
- def unk_id(self, proto):
- unk_id = 3
- return unk_id
- def post_processor(self):
- return processors.TemplateProcessing(
- single="<s> $A </s>",
- pair="<s> $A </s> </s> $B </s>",
- special_tokens=[
- ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class XLNetConverter(SpmConverter):
- def vocab(self, proto):
- return [
- (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
- for piece in proto.pieces
- ]
- def normalizer(self, proto):
- list_normalizers = [
- normalizers.Replace("``", '"'),
- normalizers.Replace("''", '"'),
- ]
- if not self.original_tokenizer.keep_accents:
- list_normalizers.append(normalizers.NFKD())
- list_normalizers.append(normalizers.StripAccents())
- if self.original_tokenizer.do_lower_case:
- list_normalizers.append(normalizers.Lowercase())
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- if precompiled_charsmap:
- list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
- list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
- return normalizers.Sequence(list_normalizers)
- def post_processor(self):
- return processors.TemplateProcessing(
- single="$A:0 <sep>:0 <cls>:2",
- pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2",
- special_tokens=[
- ("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")),
- ("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")),
- ],
- )
- class ReformerConverter(SpmConverter):
- pass
- class RemBertConverter(SpmConverter):
- # Inspired from AlbertConverter
- def normalizer(self, proto):
- list_normalizers = [
- normalizers.Replace("``", '"'),
- normalizers.Replace("''", '"'),
- normalizers.Replace(Regex(" {2,}"), " "),
- ]
- if not self.original_tokenizer.keep_accents:
- list_normalizers.append(normalizers.NFKD())
- list_normalizers.append(normalizers.StripAccents())
- if self.original_tokenizer.do_lower_case:
- list_normalizers.append(normalizers.Lowercase())
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- if precompiled_charsmap:
- list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
- return normalizers.Sequence(list_normalizers)
- def post_processor(self):
- return processors.TemplateProcessing(
- single="[CLS]:0 $A:0 [SEP]:0",
- pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
- special_tokens=[
- ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
- ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
- ],
- )
- class BertGenerationConverter(SpmConverter):
- pass
- class PegasusConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- (self.original_tokenizer.pad_token, 0.0),
- (self.original_tokenizer.eos_token, 0.0),
- ]
- if self.original_tokenizer.mask_token_sent is not None:
- vocab += [(self.original_tokenizer.mask_token_sent, 0.0)]
- if (
- self.original_tokenizer.mask_token is not None
- and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset
- ):
- vocab += [(self.original_tokenizer.mask_token, 0.0)]
- vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
- return vocab
- def unk_id(self, proto):
- return proto.trainer_spec.unk_id + self.original_tokenizer.offset
- def pre_tokenizer(self, replacement, add_prefix_space):
- prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
- return pre_tokenizers.Sequence(
- [
- pre_tokenizers.WhitespaceSplit(),
- pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme),
- ]
- )
- def post_processor(self):
- eos = self.original_tokenizer.eos_token
- special_tokens = [
- (eos, self.original_tokenizer.eos_token_id),
- ]
- return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens)
- class T5Converter(SpmConverter):
- def vocab(self, proto):
- num_extra_ids = self.original_tokenizer._extra_ids
- vocab = [(piece.piece, piece.score) for piece in proto.pieces]
- vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)]
- return vocab
- def post_processor(self):
- return processors.TemplateProcessing(
- single=["$A", "</s>"],
- pair=["$A", "</s>", "$B", "</s>"],
- special_tokens=[
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class UdopConverter(SpmConverter):
- def post_processor(self):
- return processors.TemplateProcessing(
- single=["$A", "</s>"],
- pair=["$A", "</s>", "$B", "</s>"],
- special_tokens=[
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class WhisperConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.encoder
- merges = list(self.original_tokenizer.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- )
- )
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- prefix_token_ids = self.original_tokenizer.prefix_tokens
- prefixes = self.original_tokenizer.convert_ids_to_tokens(prefix_token_ids)
- eos = self.original_tokenizer.eos_token
- eos_token_id = self.original_tokenizer.eos_token_id
- prefix_template = " ".join([f"{token}:0" for token in prefixes])
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{prefix_template} $A:0 {eos}:0",
- pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
- special_tokens=[
- (eos, eos_token_id),
- *zip(prefixes, prefix_token_ids),
- ],
- )
- return tokenizer
- class BigBirdConverter(SpmConverter):
- def post_processor(self):
- return processors.TemplateProcessing(
- single="[CLS]:0 $A:0 [SEP]:0",
- pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
- special_tokens=[
- ("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
- ("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
- ],
- )
- class CLIPConverter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.encoder
- merges = list(self.original_tokenizer.bpe_ranks.keys())
- unk_token = self.original_tokenizer.unk_token
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="</w>",
- fuse_unk=False,
- unk_token=str(unk_token),
- )
- )
- tokenizer.normalizer = normalizers.Sequence(
- [normalizers.NFC(), normalizers.Replace(Regex(r"\s+"), " "), normalizers.Lowercase()]
- )
- tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
- [
- pre_tokenizers.Split(
- Regex(r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""),
- behavior="removed",
- invert=True,
- ),
- pre_tokenizers.ByteLevel(add_prefix_space=False),
- ]
- )
- tokenizer.decoder = decoders.ByteLevel()
- # Hack to have a ByteLevel and TemplaceProcessor
- tokenizer.post_processor = processors.RobertaProcessing(
- sep=(self.original_tokenizer.eos_token, self.original_tokenizer.eos_token_id),
- cls=(self.original_tokenizer.bos_token, self.original_tokenizer.bos_token_id),
- add_prefix_space=False,
- trim_offsets=False,
- )
- return tokenizer
- class LayoutLMv2Converter(Converter):
- def converted(self) -> Tokenizer:
- vocab = self.original_tokenizer.vocab
- tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
- tokenize_chinese_chars = False
- strip_accents = False
- do_lower_case = True
- if hasattr(self.original_tokenizer, "basic_tokenizer"):
- tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
- strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
- do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
- tokenizer.normalizer = normalizers.BertNormalizer(
- clean_text=True,
- handle_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- lowercase=do_lower_case,
- )
- tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls}:0 $A:0 {sep}:0",
- pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- tokenizer.decoder = decoders.WordPiece(prefix="##")
- return tokenizer
- class BlenderbotConverter(Converter):
- def converted(self) -> Tokenizer:
- ot = self.original_tokenizer
- vocab = ot.encoder
- merges = list(ot.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- )
- )
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"$A:0 {ot.eos_token}:0",
- special_tokens=[
- (ot.eos_token, ot.eos_token_id),
- ],
- )
- return tokenizer
- class XGLMConverter(SpmConverter):
- def vocab(self, proto):
- vocab = [
- ("<s>", 0.0),
- ("<pad>", 0.0),
- ("</s>", 0.0),
- ("<unk>", 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- vocab += [("<madeupword0>", 0.0), ("<madeupword1>", 0.0), ("<madeupword2>", 0.0), ("<madeupword3>", 0.0), ("<madeupword4>", 0.0), ("<madeupword5>", 0.0), ("<madeupword6>", 0.0)] # fmt: skip
- return vocab
- def unk_id(self, proto):
- unk_id = 3
- return unk_id
- def post_processor(self):
- return processors.TemplateProcessing(
- single="</s> $A",
- pair="</s> $A </s> </s> $B",
- special_tokens=[
- ("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
- ("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
- ],
- )
- class GemmaConvert(SpmConverter):
- handle_byte_fallback = True
- SpmExtractor = GemmaSentencePieceExtractor
- # start and end of turn tokens must be marked as special
- special_tokens = {"<start_of_turn>", "<end_of_turn>"}
- """"
- split_by_unicode_script: true
- split_by_number: true
- split_by_whitespace: true
- treat_whitespace_as_suffix: false
- allow_whitespace_only_pieces: true
- split_digits: true
- byte_fallback: true
- """
- def normalizer(self, proto):
- return normalizers.Replace(" ", "▁")
- def vocab(self, proto):
- vocab = [
- (self.original_tokenizer.pad_token, 0.0),
- (self.original_tokenizer.eos_token, 0.0),
- (self.original_tokenizer.bos_token, 0.0),
- ]
- for piece in proto.pieces[3:]:
- if piece.piece == "<0x09>":
- vocab += [("\t", piece.score)]
- else:
- vocab += [(piece.piece, piece.score)]
- # vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- return vocab
- def pre_tokenizer(self, replacement, add_prefix_space):
- return pre_tokenizers.Split(" ", "merged_with_previous")
- def unk_id(self, proto):
- unk_id = 3
- return unk_id
- def decoder(self, replacement, add_prefix_space):
- return decoders.Sequence(
- [
- decoders.Replace("▁", " "),
- decoders.ByteFallback(),
- decoders.Fuse(),
- ]
- )
- class LlamaConverter(SpmConverter):
- handle_byte_fallback = True
- def vocab(self, proto):
- vocab = [
- (self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
- (self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
- (self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
- ]
- vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
- return vocab
- def unk_id(self, proto):
- unk_id = 0
- return unk_id
- def decoder(self, replacement, add_prefix_space):
- sequence = [
- decoders.Replace("▁", " "),
- decoders.ByteFallback(),
- decoders.Fuse(),
- ]
- if add_prefix_space:
- sequence += [decoders.Strip(content=" ", left=1)]
- return decoders.Sequence(sequence)
- def normalizer(self, proto):
- if getattr(self.original_tokenizer, "legacy", True):
- sequence = []
- if getattr(self.original_tokenizer, "add_prefix_space", True):
- sequence += [normalizers.Prepend(prepend="▁")]
- sequence += [normalizers.Replace(pattern=" ", content="▁")]
- return normalizers.Sequence(sequence)
- return None # non-legacy, no normalizer
- def pre_tokenizer(self, replacement, add_prefix_space):
- if not getattr(self.original_tokenizer, "legacy", True): # non-legacy, we need a replace
- prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
- return pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme, split=False)
- return None
- def post_processor(self):
- # the processor is defined in the LlamaTokenizerFast class.
- return None
- class MarkupLMConverter(Converter):
- def converted(self) -> Tokenizer:
- ot = self.original_tokenizer
- vocab = ot.encoder
- merges = list(ot.bpe_ranks.keys())
- tokenizer = Tokenizer(
- BPE(
- vocab=vocab,
- merges=merges,
- dropout=None,
- continuing_subword_prefix="",
- end_of_word_suffix="",
- fuse_unk=False,
- unk_token=self.original_tokenizer.unk_token,
- )
- )
- tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
- tokenizer.decoder = decoders.ByteLevel()
- cls = str(self.original_tokenizer.cls_token)
- sep = str(self.original_tokenizer.sep_token)
- cls_token_id = self.original_tokenizer.cls_token_id
- sep_token_id = self.original_tokenizer.sep_token_id
- tokenizer.post_processor = processors.TemplateProcessing(
- single=f"{cls} $A {sep}",
- pair=f"{cls} $A {sep} $B {sep}",
- special_tokens=[
- (cls, cls_token_id),
- (sep, sep_token_id),
- ],
- )
- return tokenizer
- class MoshiConverter(SpmConverter):
- handle_byte_fallback = True
- def __init__(self, vocab_file, model_max_length=None, **kwargs):
- requires_backends(self, "protobuf")
- Converter.__init__(self, vocab_file)
- # from .utils import sentencepiece_model_pb2 as model_pb2
- model_pb2 = import_protobuf()
- m = model_pb2.ModelProto()
- with open(vocab_file, "rb") as f:
- m.ParseFromString(f.read())
- self.proto = m
- def normalizer(self, proto):
- precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
- _normalizers = [
- normalizers.Replace(" ", "▁"),
- ]
- if not precompiled_charsmap:
- return normalizers.Sequence(_normalizers)
- else:
- return normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap)] + _normalizers)
- def decoder(self, replacement, add_prefix_space):
- sequence = [
- decoders.Replace("▁", " "),
- decoders.ByteFallback(),
- decoders.Fuse(),
- ]
- if add_prefix_space:
- sequence += [decoders.Strip(content=" ", left=1)]
- return decoders.Sequence(sequence)
- def pre_tokenizer(self, replacement, add_prefix_space):
- prepend_scheme = "first"
- return pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme, split=False)
- # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
- characters the bpe code barfs on.
- The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
- if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
- decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
- tables between utf-8 bytes and unicode strings.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- class TikTokenConverter:
- """
- A general tiktoken converter.
- """
- def __init__(
- self,
- vocab_file=None,
- pattern=r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
- add_prefix_space=False,
- additional_special_tokens=None,
- *args,
- **kwargs,
- ):
- super().__init__(*args)
- self.vocab_file = vocab_file
- self.pattern = pattern
- self.add_prefix_space = add_prefix_space
- self.additional_special_tokens = additional_special_tokens
- def extract_vocab_merges_from_model(self, tiktoken_url: str):
- try:
- from tiktoken.load import load_tiktoken_bpe
- except Exception:
- raise ValueError(
- "`tiktoken` is required to read a `tiktoken` file. Install it with " "`pip install tiktoken`."
- )
- bpe_ranks = load_tiktoken_bpe(tiktoken_url)
- byte_encoder = bytes_to_unicode()
- def token_bytes_to_string(b):
- return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
- merges = []
- vocab = {}
- for token, rank in bpe_ranks.items():
- vocab[token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- local = []
- for index in range(1, len(token)):
- piece_l, piece_r = token[:index], token[index:]
- if piece_l in bpe_ranks and piece_r in bpe_ranks and (piece_l + piece_r) in bpe_ranks:
- local.append((piece_l, piece_r, rank))
- local = sorted(local, key=lambda x: (bpe_ranks[x[0]], bpe_ranks[x[1]]), reverse=False)
- merges.extend(local)
- merges = sorted(merges, key=lambda val: val[2], reverse=False)
- merges = [(token_bytes_to_string(val[0]), token_bytes_to_string(val[1])) for val in merges]
- return vocab, merges
- def tokenizer(self):
- vocab_scores, merges = self.extract_vocab_merges_from_model(self.vocab_file)
- tokenizer = Tokenizer(BPE(vocab_scores, merges, fuse_unk=False))
- if hasattr(tokenizer.model, "ignore_merges"):
- tokenizer.model.ignore_merges = True
- return tokenizer
- def converted(self) -> Tokenizer:
- tokenizer = self.tokenizer()
- tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
- [
- pre_tokenizers.Split(Regex(self.pattern), behavior="isolated", invert=False),
- pre_tokenizers.ByteLevel(add_prefix_space=self.add_prefix_space, use_regex=False),
- ]
- )
- tokenizer.decoder = decoders.ByteLevel()
- tokenizer.add_special_tokens(self.additional_special_tokens)
- tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
- return tokenizer
- SLOW_TO_FAST_CONVERTERS = {
- "AlbertTokenizer": AlbertConverter,
- "BartTokenizer": RobertaConverter,
- "BarthezTokenizer": BarthezConverter,
- "BertTokenizer": BertConverter,
- "BigBirdTokenizer": BigBirdConverter,
- "BlenderbotTokenizer": BlenderbotConverter,
- "CamembertTokenizer": CamembertConverter,
- "CLIPTokenizer": CLIPConverter,
- "CodeGenTokenizer": GPT2Converter,
- "ConvBertTokenizer": BertConverter,
- "DebertaTokenizer": DebertaConverter,
- "DebertaV2Tokenizer": DebertaV2Converter,
- "DistilBertTokenizer": BertConverter,
- "DPRReaderTokenizer": BertConverter,
- "DPRQuestionEncoderTokenizer": BertConverter,
- "DPRContextEncoderTokenizer": BertConverter,
- "ElectraTokenizer": BertConverter,
- "FNetTokenizer": AlbertConverter,
- "FunnelTokenizer": FunnelConverter,
- "GPT2Tokenizer": GPT2Converter,
- "HerbertTokenizer": HerbertConverter,
- "LayoutLMTokenizer": BertConverter,
- "LayoutLMv2Tokenizer": BertConverter,
- "LayoutLMv3Tokenizer": RobertaConverter,
- "LayoutXLMTokenizer": XLMRobertaConverter,
- "LongformerTokenizer": RobertaConverter,
- "LEDTokenizer": RobertaConverter,
- "LxmertTokenizer": BertConverter,
- "MarkupLMTokenizer": MarkupLMConverter,
- "MBartTokenizer": MBartConverter,
- "MBart50Tokenizer": MBart50Converter,
- "MPNetTokenizer": MPNetConverter,
- "MobileBertTokenizer": BertConverter,
- "MvpTokenizer": RobertaConverter,
- "NllbTokenizer": NllbConverter,
- "OpenAIGPTTokenizer": OpenAIGPTConverter,
- "PegasusTokenizer": PegasusConverter,
- "Qwen2Tokenizer": Qwen2Converter,
- "RealmTokenizer": BertConverter,
- "ReformerTokenizer": ReformerConverter,
- "RemBertTokenizer": RemBertConverter,
- "RetriBertTokenizer": BertConverter,
- "RobertaTokenizer": RobertaConverter,
- "RoFormerTokenizer": RoFormerConverter,
- "SeamlessM4TTokenizer": SeamlessM4TConverter,
- "SqueezeBertTokenizer": BertConverter,
- "T5Tokenizer": T5Converter,
- "UdopTokenizer": UdopConverter,
- "WhisperTokenizer": WhisperConverter,
- "XLMRobertaTokenizer": XLMRobertaConverter,
- "XLNetTokenizer": XLNetConverter,
- "SplinterTokenizer": SplinterConverter,
- "XGLMTokenizer": XGLMConverter,
- "LlamaTokenizer": LlamaConverter,
- "CodeLlamaTokenizer": LlamaConverter,
- "GemmaTokenizer": GemmaConvert,
- "Phi3Tokenizer": LlamaConverter,
- }
- def convert_slow_tokenizer(transformer_tokenizer, from_tiktoken=False) -> Tokenizer:
- """
- Utilities to convert a slow tokenizer instance in a fast tokenizer instance.
- Args:
- transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]):
- Instance of a slow tokenizer to convert in the backend tokenizer for
- [`~tokenization_utils_base.PreTrainedTokenizerFast`].
- from_tiktoken (bool, optional): Whether to use the `tiktoken` library to convert the tokenizer instead of sentencepiece.
- Defaults to False.
- Return:
- A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a
- [`~tokenization_utils_base.PreTrainedTokenizerFast`]
- """
- tokenizer_class_name = transformer_tokenizer.__class__.__name__
- if tokenizer_class_name in SLOW_TO_FAST_CONVERTERS and not from_tiktoken:
- converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name]
- return converter_class(transformer_tokenizer).converted()
- else:
- try:
- logger.info("Converting from Tiktoken")
- return TikTokenConverter(
- vocab_file=transformer_tokenizer.vocab_file,
- additional_special_tokens=transformer_tokenizer.additional_special_tokens,
- ).converted()
- except Exception:
- raise ValueError(
- f"Converting from Tiktoken failed, if a converter for SentencePiece is available, provide a model path "
- f"with a SentencePiece tokenizer.model file."
- f"Currently available slow->fast convertors: {list(SLOW_TO_FAST_CONVERTERS.keys())}"
- )
|