| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import warnings
- from ...utils import is_sklearn_available, requires_backends
- if is_sklearn_available():
- from scipy.stats import pearsonr, spearmanr
- from sklearn.metrics import f1_score, matthews_corrcoef
- DEPRECATION_WARNING = (
- "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate "
- "library. You can have a look at this example script for pointers: "
- "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
- )
- def simple_accuracy(preds, labels):
- warnings.warn(DEPRECATION_WARNING, FutureWarning)
- requires_backends(simple_accuracy, "sklearn")
- return (preds == labels).mean()
- def acc_and_f1(preds, labels):
- warnings.warn(DEPRECATION_WARNING, FutureWarning)
- requires_backends(acc_and_f1, "sklearn")
- acc = simple_accuracy(preds, labels)
- f1 = f1_score(y_true=labels, y_pred=preds)
- return {
- "acc": acc,
- "f1": f1,
- "acc_and_f1": (acc + f1) / 2,
- }
- def pearson_and_spearman(preds, labels):
- warnings.warn(DEPRECATION_WARNING, FutureWarning)
- requires_backends(pearson_and_spearman, "sklearn")
- pearson_corr = pearsonr(preds, labels)[0]
- spearman_corr = spearmanr(preds, labels)[0]
- return {
- "pearson": pearson_corr,
- "spearmanr": spearman_corr,
- "corr": (pearson_corr + spearman_corr) / 2,
- }
- def glue_compute_metrics(task_name, preds, labels):
- warnings.warn(DEPRECATION_WARNING, FutureWarning)
- requires_backends(glue_compute_metrics, "sklearn")
- assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
- if task_name == "cola":
- return {"mcc": matthews_corrcoef(labels, preds)}
- elif task_name == "sst-2":
- return {"acc": simple_accuracy(preds, labels)}
- elif task_name == "mrpc":
- return acc_and_f1(preds, labels)
- elif task_name == "sts-b":
- return pearson_and_spearman(preds, labels)
- elif task_name == "qqp":
- return acc_and_f1(preds, labels)
- elif task_name == "mnli":
- return {"mnli/acc": simple_accuracy(preds, labels)}
- elif task_name == "mnli-mm":
- return {"mnli-mm/acc": simple_accuracy(preds, labels)}
- elif task_name == "qnli":
- return {"acc": simple_accuracy(preds, labels)}
- elif task_name == "rte":
- return {"acc": simple_accuracy(preds, labels)}
- elif task_name == "wnli":
- return {"acc": simple_accuracy(preds, labels)}
- elif task_name == "hans":
- return {"acc": simple_accuracy(preds, labels)}
- else:
- raise KeyError(task_name)
- def xnli_compute_metrics(task_name, preds, labels):
- warnings.warn(DEPRECATION_WARNING, FutureWarning)
- requires_backends(xnli_compute_metrics, "sklearn")
- if len(preds) != len(labels):
- raise ValueError(f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}")
- if task_name == "xnli":
- return {"acc": simple_accuracy(preds, labels)}
- else:
- raise KeyError(task_name)
|