| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import json
- import os
- from functools import partial
- from multiprocessing import Pool, cpu_count
- import numpy as np
- from tqdm import tqdm
- from ...models.bert.tokenization_bert import whitespace_tokenize
- from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy
- from ...utils import is_tf_available, is_torch_available, logging
- from .utils import DataProcessor
- # Store the tokenizers which insert 2 separators tokens
- MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"}
- if is_torch_available():
- import torch
- from torch.utils.data import TensorDataset
- if is_tf_available():
- import tensorflow as tf
- logger = logging.get_logger(__name__)
- def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
- """Returns tokenized answer spans that better match the annotated answer."""
- tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
- for new_start in range(input_start, input_end + 1):
- for new_end in range(input_end, new_start - 1, -1):
- text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
- if text_span == tok_answer_text:
- return (new_start, new_end)
- return (input_start, input_end)
- def _check_is_max_context(doc_spans, cur_span_index, position):
- """Check if this is the 'max context' doc span for the token."""
- best_score = None
- best_span_index = None
- for span_index, doc_span in enumerate(doc_spans):
- end = doc_span.start + doc_span.length - 1
- if position < doc_span.start:
- continue
- if position > end:
- continue
- num_left_context = position - doc_span.start
- num_right_context = end - position
- score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
- if best_score is None or score > best_score:
- best_score = score
- best_span_index = span_index
- return cur_span_index == best_span_index
- def _new_check_is_max_context(doc_spans, cur_span_index, position):
- """Check if this is the 'max context' doc span for the token."""
- # if len(doc_spans) == 1:
- # return True
- best_score = None
- best_span_index = None
- for span_index, doc_span in enumerate(doc_spans):
- end = doc_span["start"] + doc_span["length"] - 1
- if position < doc_span["start"]:
- continue
- if position > end:
- continue
- num_left_context = position - doc_span["start"]
- num_right_context = end - position
- score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
- if best_score is None or score > best_score:
- best_score = score
- best_span_index = span_index
- return cur_span_index == best_span_index
- def _is_whitespace(c):
- if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
- return True
- return False
- def squad_convert_example_to_features(
- example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training
- ):
- features = []
- if is_training and not example.is_impossible:
- # Get start and end position
- start_position = example.start_position
- end_position = example.end_position
- # If the answer cannot be found in the text, then skip this example.
- actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)])
- cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
- if actual_text.find(cleaned_answer_text) == -1:
- logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'")
- return []
- tok_to_orig_index = []
- orig_to_tok_index = []
- all_doc_tokens = []
- for i, token in enumerate(example.doc_tokens):
- orig_to_tok_index.append(len(all_doc_tokens))
- if tokenizer.__class__.__name__ in [
- "RobertaTokenizer",
- "LongformerTokenizer",
- "BartTokenizer",
- "RobertaTokenizerFast",
- "LongformerTokenizerFast",
- "BartTokenizerFast",
- ]:
- sub_tokens = tokenizer.tokenize(token, add_prefix_space=True)
- else:
- sub_tokens = tokenizer.tokenize(token)
- for sub_token in sub_tokens:
- tok_to_orig_index.append(i)
- all_doc_tokens.append(sub_token)
- if is_training and not example.is_impossible:
- tok_start_position = orig_to_tok_index[example.start_position]
- if example.end_position < len(example.doc_tokens) - 1:
- tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
- else:
- tok_end_position = len(all_doc_tokens) - 1
- (tok_start_position, tok_end_position) = _improve_answer_span(
- all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
- )
- spans = []
- truncated_query = tokenizer.encode(
- example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length
- )
- # Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling
- # in the way they compute mask of added tokens.
- tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower()
- sequence_added_tokens = (
- tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1
- if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET
- else tokenizer.model_max_length - tokenizer.max_len_single_sentence
- )
- sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair
- span_doc_tokens = all_doc_tokens
- while len(spans) * doc_stride < len(all_doc_tokens):
- # Define the side we want to truncate / pad and the text/pair sorting
- if tokenizer.padding_side == "right":
- texts = truncated_query
- pairs = span_doc_tokens
- truncation = TruncationStrategy.ONLY_SECOND.value
- else:
- texts = span_doc_tokens
- pairs = truncated_query
- truncation = TruncationStrategy.ONLY_FIRST.value
- encoded_dict = tokenizer.encode_plus( # TODO(thom) update this logic
- texts,
- pairs,
- truncation=truncation,
- padding=padding_strategy,
- max_length=max_seq_length,
- return_overflowing_tokens=True,
- stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
- return_token_type_ids=True,
- )
- paragraph_len = min(
- len(all_doc_tokens) - len(spans) * doc_stride,
- max_seq_length - len(truncated_query) - sequence_pair_added_tokens,
- )
- if tokenizer.pad_token_id in encoded_dict["input_ids"]:
- if tokenizer.padding_side == "right":
- non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)]
- else:
- last_padding_id_position = (
- len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id)
- )
- non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :]
- else:
- non_padded_ids = encoded_dict["input_ids"]
- tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)
- token_to_orig_map = {}
- for i in range(paragraph_len):
- index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i
- token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]
- encoded_dict["paragraph_len"] = paragraph_len
- encoded_dict["tokens"] = tokens
- encoded_dict["token_to_orig_map"] = token_to_orig_map
- encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
- encoded_dict["token_is_max_context"] = {}
- encoded_dict["start"] = len(spans) * doc_stride
- encoded_dict["length"] = paragraph_len
- spans.append(encoded_dict)
- if "overflowing_tokens" not in encoded_dict or (
- "overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0
- ):
- break
- span_doc_tokens = encoded_dict["overflowing_tokens"]
- for doc_span_index in range(len(spans)):
- for j in range(spans[doc_span_index]["paragraph_len"]):
- is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
- index = (
- j
- if tokenizer.padding_side == "left"
- else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
- )
- spans[doc_span_index]["token_is_max_context"][index] = is_max_context
- for span in spans:
- # Identify the position of the CLS token
- cls_index = span["input_ids"].index(tokenizer.cls_token_id)
- # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
- # Original TF implementation also keep the classification token (set to 0)
- p_mask = np.ones_like(span["token_type_ids"])
- if tokenizer.padding_side == "right":
- p_mask[len(truncated_query) + sequence_added_tokens :] = 0
- else:
- p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0
- pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id)
- special_token_indices = np.asarray(
- tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True)
- ).nonzero()
- p_mask[pad_token_indices] = 1
- p_mask[special_token_indices] = 1
- # Set the cls index to 0: the CLS index can be used for impossible answers
- p_mask[cls_index] = 0
- span_is_impossible = example.is_impossible
- start_position = 0
- end_position = 0
- if is_training and not span_is_impossible:
- # For training, if our document chunk does not contain an annotation
- # we throw it out, since there is nothing to predict.
- doc_start = span["start"]
- doc_end = span["start"] + span["length"] - 1
- out_of_span = False
- if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
- out_of_span = True
- if out_of_span:
- start_position = cls_index
- end_position = cls_index
- span_is_impossible = True
- else:
- if tokenizer.padding_side == "left":
- doc_offset = 0
- else:
- doc_offset = len(truncated_query) + sequence_added_tokens
- start_position = tok_start_position - doc_start + doc_offset
- end_position = tok_end_position - doc_start + doc_offset
- features.append(
- SquadFeatures(
- span["input_ids"],
- span["attention_mask"],
- span["token_type_ids"],
- cls_index,
- p_mask.tolist(),
- example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing.
- unique_id=0,
- paragraph_len=span["paragraph_len"],
- token_is_max_context=span["token_is_max_context"],
- tokens=span["tokens"],
- token_to_orig_map=span["token_to_orig_map"],
- start_position=start_position,
- end_position=end_position,
- is_impossible=span_is_impossible,
- qas_id=example.qas_id,
- )
- )
- return features
- def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase):
- global tokenizer
- tokenizer = tokenizer_for_convert
- def squad_convert_examples_to_features(
- examples,
- tokenizer,
- max_seq_length,
- doc_stride,
- max_query_length,
- is_training,
- padding_strategy="max_length",
- return_dataset=False,
- threads=1,
- tqdm_enabled=True,
- ):
- """
- Converts a list of examples into a list of features that can be directly given as input to a model. It is
- model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.
- Args:
- examples: list of [`~data.processors.squad.SquadExample`]
- tokenizer: an instance of a child of [`PreTrainedTokenizer`]
- max_seq_length: The maximum sequence length of the inputs.
- doc_stride: The stride used when the context is too large and is split across several features.
- max_query_length: The maximum length of the query.
- is_training: whether to create features for model evaluation or model training.
- padding_strategy: Default to "max_length". Which padding strategy to use
- return_dataset: Default False. Either 'pt' or 'tf'.
- if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset
- threads: multiple processing threads.
- Returns:
- list of [`~data.processors.squad.SquadFeatures`]
- Example:
- ```python
- processor = SquadV2Processor()
- examples = processor.get_dev_examples(data_dir)
- features = squad_convert_examples_to_features(
- examples=examples,
- tokenizer=tokenizer,
- max_seq_length=args.max_seq_length,
- doc_stride=args.doc_stride,
- max_query_length=args.max_query_length,
- is_training=not evaluate,
- )
- ```"""
- # Defining helper methods
- features = []
- threads = min(threads, cpu_count())
- with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
- annotate_ = partial(
- squad_convert_example_to_features,
- max_seq_length=max_seq_length,
- doc_stride=doc_stride,
- max_query_length=max_query_length,
- padding_strategy=padding_strategy,
- is_training=is_training,
- )
- features = list(
- tqdm(
- p.imap(annotate_, examples, chunksize=32),
- total=len(examples),
- desc="convert squad examples to features",
- disable=not tqdm_enabled,
- )
- )
- new_features = []
- unique_id = 1000000000
- example_index = 0
- for example_features in tqdm(
- features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled
- ):
- if not example_features:
- continue
- for example_feature in example_features:
- example_feature.example_index = example_index
- example_feature.unique_id = unique_id
- new_features.append(example_feature)
- unique_id += 1
- example_index += 1
- features = new_features
- del new_features
- if return_dataset == "pt":
- if not is_torch_available():
- raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.")
- # Convert to Tensors and build dataset
- all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
- all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
- all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
- all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
- all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
- all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float)
- if not is_training:
- all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
- dataset = TensorDataset(
- all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask
- )
- else:
- all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
- all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
- dataset = TensorDataset(
- all_input_ids,
- all_attention_masks,
- all_token_type_ids,
- all_start_positions,
- all_end_positions,
- all_cls_index,
- all_p_mask,
- all_is_impossible,
- )
- return features, dataset
- elif return_dataset == "tf":
- if not is_tf_available():
- raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.")
- def gen():
- for i, ex in enumerate(features):
- if ex.token_type_ids is None:
- yield (
- {
- "input_ids": ex.input_ids,
- "attention_mask": ex.attention_mask,
- "feature_index": i,
- "qas_id": ex.qas_id,
- },
- {
- "start_positions": ex.start_position,
- "end_positions": ex.end_position,
- "cls_index": ex.cls_index,
- "p_mask": ex.p_mask,
- "is_impossible": ex.is_impossible,
- },
- )
- else:
- yield (
- {
- "input_ids": ex.input_ids,
- "attention_mask": ex.attention_mask,
- "token_type_ids": ex.token_type_ids,
- "feature_index": i,
- "qas_id": ex.qas_id,
- },
- {
- "start_positions": ex.start_position,
- "end_positions": ex.end_position,
- "cls_index": ex.cls_index,
- "p_mask": ex.p_mask,
- "is_impossible": ex.is_impossible,
- },
- )
- # Why have we split the batch into a tuple? PyTorch just has a list of tensors.
- if "token_type_ids" in tokenizer.model_input_names:
- train_types = (
- {
- "input_ids": tf.int32,
- "attention_mask": tf.int32,
- "token_type_ids": tf.int32,
- "feature_index": tf.int64,
- "qas_id": tf.string,
- },
- {
- "start_positions": tf.int64,
- "end_positions": tf.int64,
- "cls_index": tf.int64,
- "p_mask": tf.int32,
- "is_impossible": tf.int32,
- },
- )
- train_shapes = (
- {
- "input_ids": tf.TensorShape([None]),
- "attention_mask": tf.TensorShape([None]),
- "token_type_ids": tf.TensorShape([None]),
- "feature_index": tf.TensorShape([]),
- "qas_id": tf.TensorShape([]),
- },
- {
- "start_positions": tf.TensorShape([]),
- "end_positions": tf.TensorShape([]),
- "cls_index": tf.TensorShape([]),
- "p_mask": tf.TensorShape([None]),
- "is_impossible": tf.TensorShape([]),
- },
- )
- else:
- train_types = (
- {"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string},
- {
- "start_positions": tf.int64,
- "end_positions": tf.int64,
- "cls_index": tf.int64,
- "p_mask": tf.int32,
- "is_impossible": tf.int32,
- },
- )
- train_shapes = (
- {
- "input_ids": tf.TensorShape([None]),
- "attention_mask": tf.TensorShape([None]),
- "feature_index": tf.TensorShape([]),
- "qas_id": tf.TensorShape([]),
- },
- {
- "start_positions": tf.TensorShape([]),
- "end_positions": tf.TensorShape([]),
- "cls_index": tf.TensorShape([]),
- "p_mask": tf.TensorShape([None]),
- "is_impossible": tf.TensorShape([]),
- },
- )
- return tf.data.Dataset.from_generator(gen, train_types, train_shapes)
- else:
- return features
- class SquadProcessor(DataProcessor):
- """
- Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
- version 2.0 of SQuAD, respectively.
- """
- train_file = None
- dev_file = None
- def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
- if not evaluate:
- answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
- answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
- answers = []
- else:
- answers = [
- {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
- for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
- ]
- answer = None
- answer_start = None
- return SquadExample(
- qas_id=tensor_dict["id"].numpy().decode("utf-8"),
- question_text=tensor_dict["question"].numpy().decode("utf-8"),
- context_text=tensor_dict["context"].numpy().decode("utf-8"),
- answer_text=answer,
- start_position_character=answer_start,
- title=tensor_dict["title"].numpy().decode("utf-8"),
- answers=answers,
- )
- def get_examples_from_dataset(self, dataset, evaluate=False):
- """
- Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset.
- Args:
- dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")*
- evaluate: Boolean specifying if in evaluation mode or in training mode
- Returns:
- List of SquadExample
- Examples:
- ```python
- >>> import tensorflow_datasets as tfds
- >>> dataset = tfds.load("squad")
- >>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
- >>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
- ```"""
- if evaluate:
- dataset = dataset["validation"]
- else:
- dataset = dataset["train"]
- examples = []
- for tensor_dict in tqdm(dataset):
- examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
- return examples
- def get_train_examples(self, data_dir, filename=None):
- """
- Returns the training examples from the data directory.
- Args:
- data_dir: Directory containing the data files used for training and evaluating.
- filename: None by default, specify this if the training file has a different name than the original one
- which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
- """
- if data_dir is None:
- data_dir = ""
- if self.train_file is None:
- raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
- with open(
- os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
- ) as reader:
- input_data = json.load(reader)["data"]
- return self._create_examples(input_data, "train")
- def get_dev_examples(self, data_dir, filename=None):
- """
- Returns the evaluation example from the data directory.
- Args:
- data_dir: Directory containing the data files used for training and evaluating.
- filename: None by default, specify this if the evaluation file has a different name than the original one
- which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
- """
- if data_dir is None:
- data_dir = ""
- if self.dev_file is None:
- raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
- with open(
- os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
- ) as reader:
- input_data = json.load(reader)["data"]
- return self._create_examples(input_data, "dev")
- def _create_examples(self, input_data, set_type):
- is_training = set_type == "train"
- examples = []
- for entry in tqdm(input_data):
- title = entry["title"]
- for paragraph in entry["paragraphs"]:
- context_text = paragraph["context"]
- for qa in paragraph["qas"]:
- qas_id = qa["id"]
- question_text = qa["question"]
- start_position_character = None
- answer_text = None
- answers = []
- is_impossible = qa.get("is_impossible", False)
- if not is_impossible:
- if is_training:
- answer = qa["answers"][0]
- answer_text = answer["text"]
- start_position_character = answer["answer_start"]
- else:
- answers = qa["answers"]
- example = SquadExample(
- qas_id=qas_id,
- question_text=question_text,
- context_text=context_text,
- answer_text=answer_text,
- start_position_character=start_position_character,
- title=title,
- is_impossible=is_impossible,
- answers=answers,
- )
- examples.append(example)
- return examples
- class SquadV1Processor(SquadProcessor):
- train_file = "train-v1.1.json"
- dev_file = "dev-v1.1.json"
- class SquadV2Processor(SquadProcessor):
- train_file = "train-v2.0.json"
- dev_file = "dev-v2.0.json"
- class SquadExample:
- """
- A single training/test example for the Squad dataset, as loaded from disk.
- Args:
- qas_id: The example's unique identifier
- question_text: The question string
- context_text: The context string
- answer_text: The answer string
- start_position_character: The character position of the start of the answer
- title: The title of the example
- answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
- is_impossible: False by default, set to True if the example has no possible answer.
- """
- def __init__(
- self,
- qas_id,
- question_text,
- context_text,
- answer_text,
- start_position_character,
- title,
- answers=[],
- is_impossible=False,
- ):
- self.qas_id = qas_id
- self.question_text = question_text
- self.context_text = context_text
- self.answer_text = answer_text
- self.title = title
- self.is_impossible = is_impossible
- self.answers = answers
- self.start_position, self.end_position = 0, 0
- doc_tokens = []
- char_to_word_offset = []
- prev_is_whitespace = True
- # Split on whitespace so that different tokens may be attributed to their original position.
- for c in self.context_text:
- if _is_whitespace(c):
- prev_is_whitespace = True
- else:
- if prev_is_whitespace:
- doc_tokens.append(c)
- else:
- doc_tokens[-1] += c
- prev_is_whitespace = False
- char_to_word_offset.append(len(doc_tokens) - 1)
- self.doc_tokens = doc_tokens
- self.char_to_word_offset = char_to_word_offset
- # Start and end positions only has a value during evaluation.
- if start_position_character is not None and not is_impossible:
- self.start_position = char_to_word_offset[start_position_character]
- self.end_position = char_to_word_offset[
- min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
- ]
- class SquadFeatures:
- """
- Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
- [`~data.processors.squad.SquadExample`] using the
- :method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.
- Args:
- input_ids: Indices of input sequence tokens in the vocabulary.
- attention_mask: Mask to avoid performing attention on padding token indices.
- token_type_ids: Segment token indices to indicate first and second portions of the inputs.
- cls_index: the index of the CLS token.
- p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
- Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
- example_index: the index of the example
- unique_id: The unique Feature identifier
- paragraph_len: The length of the context
- token_is_max_context:
- List of booleans identifying which tokens have their maximum context in this feature object. If a token
- does not have their maximum context in this feature object, it means that another feature object has more
- information related to that token and should be prioritized over this feature for that token.
- tokens: list of tokens corresponding to the input ids
- token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
- start_position: start of the answer token index
- end_position: end of the answer token index
- encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
- """
- def __init__(
- self,
- input_ids,
- attention_mask,
- token_type_ids,
- cls_index,
- p_mask,
- example_index,
- unique_id,
- paragraph_len,
- token_is_max_context,
- tokens,
- token_to_orig_map,
- start_position,
- end_position,
- is_impossible,
- qas_id: str = None,
- encoding: BatchEncoding = None,
- ):
- self.input_ids = input_ids
- self.attention_mask = attention_mask
- self.token_type_ids = token_type_ids
- self.cls_index = cls_index
- self.p_mask = p_mask
- self.example_index = example_index
- self.unique_id = unique_id
- self.paragraph_len = paragraph_len
- self.token_is_max_context = token_is_max_context
- self.tokens = tokens
- self.token_to_orig_map = token_to_orig_map
- self.start_position = start_position
- self.end_position = end_position
- self.is_impossible = is_impossible
- self.qas_id = qas_id
- self.encoding = encoding
- class SquadResult:
- """
- Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
- Args:
- unique_id: The unique identifier corresponding to that example.
- start_logits: The logits corresponding to the start of the answer
- end_logits: The logits corresponding to the end of the answer
- """
- def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
- self.start_logits = start_logits
- self.end_logits = end_logits
- self.unique_id = unique_id
- if start_top_index:
- self.start_top_index = start_top_index
- self.end_top_index = end_top_index
- self.cls_logits = cls_logits
|