| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- # coding=utf-8
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import csv
- import dataclasses
- import json
- from dataclasses import dataclass
- from typing import List, Optional, Union
- from ...utils import is_tf_available, is_torch_available, logging
- logger = logging.get_logger(__name__)
- @dataclass
- class InputExample:
- """
- A single training/test example for simple sequence classification.
- Args:
- guid: Unique id for the example.
- text_a: string. The untokenized text of the first sequence. For single
- sequence tasks, only this sequence must be specified.
- text_b: (Optional) string. The untokenized text of the second sequence.
- Only must be specified for sequence pair tasks.
- label: (Optional) string. The label of the example. This should be
- specified for train and dev examples, but not for test examples.
- """
- guid: str
- text_a: str
- text_b: Optional[str] = None
- label: Optional[str] = None
- def to_json_string(self):
- """Serializes this instance to a JSON string."""
- return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
- @dataclass(frozen=True)
- class InputFeatures:
- """
- A single set of features of data. Property names are the same names as the corresponding inputs to a model.
- Args:
- input_ids: Indices of input sequence tokens in the vocabulary.
- attention_mask: Mask to avoid performing attention on padding token indices.
- Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded)
- tokens.
- token_type_ids: (Optional) Segment token indices to indicate first and second
- portions of the inputs. Only some models use them.
- label: (Optional) Label corresponding to the input. Int for classification problems,
- float for regression problems.
- """
- input_ids: List[int]
- attention_mask: Optional[List[int]] = None
- token_type_ids: Optional[List[int]] = None
- label: Optional[Union[int, float]] = None
- def to_json_string(self):
- """Serializes this instance to a JSON string."""
- return json.dumps(dataclasses.asdict(self)) + "\n"
- class DataProcessor:
- """Base class for data converters for sequence classification data sets."""
- def get_example_from_tensor_dict(self, tensor_dict):
- """
- Gets an example from a dict with tensorflow tensors.
- Args:
- tensor_dict: Keys and values should match the corresponding Glue
- tensorflow_dataset examples.
- """
- raise NotImplementedError()
- def get_train_examples(self, data_dir):
- """Gets a collection of [`InputExample`] for the train set."""
- raise NotImplementedError()
- def get_dev_examples(self, data_dir):
- """Gets a collection of [`InputExample`] for the dev set."""
- raise NotImplementedError()
- def get_test_examples(self, data_dir):
- """Gets a collection of [`InputExample`] for the test set."""
- raise NotImplementedError()
- def get_labels(self):
- """Gets the list of labels for this data set."""
- raise NotImplementedError()
- def tfds_map(self, example):
- """
- Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts
- examples to the correct format.
- """
- if len(self.get_labels()) > 1:
- example.label = self.get_labels()[int(example.label)]
- return example
- @classmethod
- def _read_tsv(cls, input_file, quotechar=None):
- """Reads a tab separated value file."""
- with open(input_file, "r", encoding="utf-8-sig") as f:
- return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
- class SingleSentenceClassificationProcessor(DataProcessor):
- """Generic processor for a single sentence classification data set."""
- def __init__(self, labels=None, examples=None, mode="classification", verbose=False):
- self.labels = [] if labels is None else labels
- self.examples = [] if examples is None else examples
- self.mode = mode
- self.verbose = verbose
- def __len__(self):
- return len(self.examples)
- def __getitem__(self, idx):
- if isinstance(idx, slice):
- return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx])
- return self.examples[idx]
- @classmethod
- def create_from_csv(
- cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs
- ):
- processor = cls(**kwargs)
- processor.add_examples_from_csv(
- file_name,
- split_name=split_name,
- column_label=column_label,
- column_text=column_text,
- column_id=column_id,
- skip_first_row=skip_first_row,
- overwrite_labels=True,
- overwrite_examples=True,
- )
- return processor
- @classmethod
- def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs):
- processor = cls(**kwargs)
- processor.add_examples(texts_or_text_and_labels, labels=labels)
- return processor
- def add_examples_from_csv(
- self,
- file_name,
- split_name="",
- column_label=0,
- column_text=1,
- column_id=None,
- skip_first_row=False,
- overwrite_labels=False,
- overwrite_examples=False,
- ):
- lines = self._read_tsv(file_name)
- if skip_first_row:
- lines = lines[1:]
- texts = []
- labels = []
- ids = []
- for i, line in enumerate(lines):
- texts.append(line[column_text])
- labels.append(line[column_label])
- if column_id is not None:
- ids.append(line[column_id])
- else:
- guid = f"{split_name}-{i}" if split_name else str(i)
- ids.append(guid)
- return self.add_examples(
- texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples
- )
- def add_examples(
- self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False
- ):
- if labels is not None and len(texts_or_text_and_labels) != len(labels):
- raise ValueError(
- f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}"
- )
- if ids is not None and len(texts_or_text_and_labels) != len(ids):
- raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}")
- if ids is None:
- ids = [None] * len(texts_or_text_and_labels)
- if labels is None:
- labels = [None] * len(texts_or_text_and_labels)
- examples = []
- added_labels = set()
- for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids):
- if isinstance(text_or_text_and_label, (tuple, list)) and label is None:
- text, label = text_or_text_and_label
- else:
- text = text_or_text_and_label
- added_labels.add(label)
- examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label))
- # Update examples
- if overwrite_examples:
- self.examples = examples
- else:
- self.examples.extend(examples)
- # Update labels
- if overwrite_labels:
- self.labels = list(added_labels)
- else:
- self.labels = list(set(self.labels).union(added_labels))
- return self.examples
- def get_features(
- self,
- tokenizer,
- max_length=None,
- pad_on_left=False,
- pad_token=0,
- mask_padding_with_zero=True,
- return_tensors=None,
- ):
- """
- Convert examples in a list of `InputFeatures`
- Args:
- tokenizer: Instance of a tokenizer that will tokenize the examples
- max_length: Maximum example length
- pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default)
- pad_token: Padding token
- mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values
- and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual
- values)
- Returns:
- If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the
- task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific
- `InputFeatures` which can be fed to the model.
- """
- if max_length is None:
- max_length = tokenizer.max_len
- label_map = {label: i for i, label in enumerate(self.labels)}
- all_input_ids = []
- for ex_index, example in enumerate(self.examples):
- if ex_index % 10000 == 0:
- logger.info(f"Tokenizing example {ex_index}")
- input_ids = tokenizer.encode(
- example.text_a,
- add_special_tokens=True,
- max_length=min(max_length, tokenizer.max_len),
- )
- all_input_ids.append(input_ids)
- batch_length = max(len(input_ids) for input_ids in all_input_ids)
- features = []
- for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)):
- if ex_index % 10000 == 0:
- logger.info(f"Writing example {ex_index}/{len(self.examples)}")
- # The mask has 1 for real tokens and 0 for padding tokens. Only real
- # tokens are attended to.
- attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
- # Zero-pad up to the sequence length.
- padding_length = batch_length - len(input_ids)
- if pad_on_left:
- input_ids = ([pad_token] * padding_length) + input_ids
- attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
- else:
- input_ids = input_ids + ([pad_token] * padding_length)
- attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
- if len(input_ids) != batch_length:
- raise ValueError(f"Error with input length {len(input_ids)} vs {batch_length}")
- if len(attention_mask) != batch_length:
- raise ValueError(f"Error with input length {len(attention_mask)} vs {batch_length}")
- if self.mode == "classification":
- label = label_map[example.label]
- elif self.mode == "regression":
- label = float(example.label)
- else:
- raise ValueError(self.mode)
- if ex_index < 5 and self.verbose:
- logger.info("*** Example ***")
- logger.info(f"guid: {example.guid}")
- logger.info(f"input_ids: {' '.join([str(x) for x in input_ids])}")
- logger.info(f"attention_mask: {' '.join([str(x) for x in attention_mask])}")
- logger.info(f"label: {example.label} (id = {label})")
- features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label))
- if return_tensors is None:
- return features
- elif return_tensors == "tf":
- if not is_tf_available():
- raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported")
- import tensorflow as tf
- def gen():
- for ex in features:
- yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label)
- dataset = tf.data.Dataset.from_generator(
- gen,
- ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
- ({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])),
- )
- return dataset
- elif return_tensors == "pt":
- if not is_torch_available():
- raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported")
- import torch
- from torch.utils.data import TensorDataset
- all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
- all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
- if self.mode == "classification":
- all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
- elif self.mode == "regression":
- all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
- dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels)
- return dataset
- else:
- raise ValueError("return_tensors should be one of 'tf' or 'pt'")
|