| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- # coding=utf-8
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """XNLI utils (dataset loading and evaluation)"""
- import os
- from ...utils import logging
- from .utils import DataProcessor, InputExample
- logger = logging.get_logger(__name__)
- class XnliProcessor(DataProcessor):
- """
- Processor for the XNLI dataset. Adapted from
- https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
- """
- def __init__(self, language, train_language=None):
- self.language = language
- self.train_language = train_language
- def get_train_examples(self, data_dir):
- """See base class."""
- lg = self.language if self.train_language is None else self.train_language
- lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
- examples = []
- for i, line in enumerate(lines):
- if i == 0:
- continue
- guid = f"train-{i}"
- text_a = line[0]
- text_b = line[1]
- label = "contradiction" if line[2] == "contradictory" else line[2]
- if not isinstance(text_a, str):
- raise TypeError(f"Training input {text_a} is not a string")
- if not isinstance(text_b, str):
- raise TypeError(f"Training input {text_b} is not a string")
- if not isinstance(label, str):
- raise TypeError(f"Training label {label} is not a string")
- examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
- def get_test_examples(self, data_dir):
- """See base class."""
- lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
- examples = []
- for i, line in enumerate(lines):
- if i == 0:
- continue
- language = line[0]
- if language != self.language:
- continue
- guid = f"test-{i}"
- text_a = line[6]
- text_b = line[7]
- label = line[1]
- if not isinstance(text_a, str):
- raise TypeError(f"Training input {text_a} is not a string")
- if not isinstance(text_b, str):
- raise TypeError(f"Training input {text_b} is not a string")
- if not isinstance(label, str):
- raise TypeError(f"Training label {label} is not a string")
- examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
- def get_labels(self):
- """See base class."""
- return ["contradiction", "entailment", "neutral"]
- xnli_processors = {
- "xnli": XnliProcessor,
- }
- xnli_output_modes = {
- "xnli": "classification",
- }
- xnli_tasks_num_labels = {
- "xnli": 3,
- }
|