| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Feature extraction saving/loading class for common feature extractors.
- """
- import copy
- import json
- import os
- import warnings
- from collections import UserDict
- from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
- import numpy as np
- from .dynamic_module_utils import custom_object_save
- from .utils import (
- FEATURE_EXTRACTOR_NAME,
- PushToHubMixin,
- TensorType,
- add_model_info_to_auto_map,
- add_model_info_to_custom_pipelines,
- cached_file,
- copy_func,
- download_url,
- is_flax_available,
- is_jax_tensor,
- is_numpy_array,
- is_offline_mode,
- is_remote_url,
- is_tf_available,
- is_torch_available,
- is_torch_device,
- is_torch_dtype,
- logging,
- requires_backends,
- )
- if TYPE_CHECKING:
- if is_torch_available():
- import torch # noqa
- logger = logging.get_logger(__name__)
- PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821
- class BatchFeature(UserDict):
- r"""
- Holds the output of the [`~SequenceFeatureExtractor.pad`] and feature extractor specific `__call__` methods.
- This class is derived from a python dictionary and can be used as a dictionary.
- Args:
- data (`dict`, *optional*):
- Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask',
- etc.).
- tensor_type (`Union[None, str, TensorType]`, *optional*):
- You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
- initialization.
- """
- def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
- super().__init__(data)
- self.convert_to_tensors(tensor_type=tensor_type)
- def __getitem__(self, item: str) -> Union[Any]:
- """
- If the key is a string, returns the value of the dict associated to `key` ('input_values', 'attention_mask',
- etc.).
- """
- if isinstance(item, str):
- return self.data[item]
- else:
- raise KeyError("Indexing with integers is not available when using Python based feature extractors")
- def __getattr__(self, item: str):
- try:
- return self.data[item]
- except KeyError:
- raise AttributeError
- def __getstate__(self):
- return {"data": self.data}
- def __setstate__(self, state):
- if "data" in state:
- self.data = state["data"]
- # Copied from transformers.tokenization_utils_base.BatchEncoding.keys
- def keys(self):
- return self.data.keys()
- # Copied from transformers.tokenization_utils_base.BatchEncoding.values
- def values(self):
- return self.data.values()
- # Copied from transformers.tokenization_utils_base.BatchEncoding.items
- def items(self):
- return self.data.items()
- def _get_is_as_tensor_fns(self, tensor_type: Optional[Union[str, TensorType]] = None):
- if tensor_type is None:
- return None, None
- # Convert to TensorType
- if not isinstance(tensor_type, TensorType):
- tensor_type = TensorType(tensor_type)
- # Get a function reference for the correct framework
- if tensor_type == TensorType.TENSORFLOW:
- if not is_tf_available():
- raise ImportError(
- "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
- )
- import tensorflow as tf
- as_tensor = tf.constant
- is_tensor = tf.is_tensor
- elif tensor_type == TensorType.PYTORCH:
- if not is_torch_available():
- raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
- import torch # noqa
- def as_tensor(value):
- if isinstance(value, (list, tuple)) and len(value) > 0:
- if isinstance(value[0], np.ndarray):
- value = np.array(value)
- elif (
- isinstance(value[0], (list, tuple))
- and len(value[0]) > 0
- and isinstance(value[0][0], np.ndarray)
- ):
- value = np.array(value)
- if isinstance(value, np.ndarray):
- return torch.from_numpy(value)
- else:
- return torch.tensor(value)
- is_tensor = torch.is_tensor
- elif tensor_type == TensorType.JAX:
- if not is_flax_available():
- raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
- import jax.numpy as jnp # noqa: F811
- as_tensor = jnp.array
- is_tensor = is_jax_tensor
- else:
- def as_tensor(value, dtype=None):
- if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)):
- value_lens = [len(val) for val in value]
- if len(set(value_lens)) > 1 and dtype is None:
- # we have a ragged list so handle explicitly
- value = as_tensor([np.asarray(val) for val in value], dtype=object)
- return np.asarray(value, dtype=dtype)
- is_tensor = is_numpy_array
- return is_tensor, as_tensor
- def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
- """
- Convert the inner content to tensors.
- Args:
- tensor_type (`str` or [`~utils.TensorType`], *optional*):
- The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
- `None`, no modification is done.
- """
- if tensor_type is None:
- return self
- is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
- # Do the tensor conversion in batch
- for key, value in self.items():
- try:
- if not is_tensor(value):
- tensor = as_tensor(value)
- self[key] = tensor
- except: # noqa E722
- if key == "overflowing_values":
- raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
- raise ValueError(
- "Unable to create tensor, you should probably activate padding "
- "with 'padding=True' to have batched tensors with the same length."
- )
- return self
- def to(self, *args, **kwargs) -> "BatchFeature":
- """
- Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
- different `dtypes` and sending the `BatchFeature` to a different `device`.
- Args:
- args (`Tuple`):
- Will be passed to the `to(...)` function of the tensors.
- kwargs (`Dict`, *optional*):
- Will be passed to the `to(...)` function of the tensors.
- Returns:
- [`BatchFeature`]: The same instance after modification.
- """
- requires_backends(self, ["torch"])
- import torch # noqa
- new_data = {}
- device = kwargs.get("device")
- # Check if the args are a device or a dtype
- if device is None and len(args) > 0:
- # device should be always the first argument
- arg = args[0]
- if is_torch_dtype(arg):
- # The first argument is a dtype
- pass
- elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
- device = arg
- else:
- # it's something else
- raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
- # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
- for k, v in self.items():
- # check if v is a floating point
- if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
- # cast and send to device
- new_data[k] = v.to(*args, **kwargs)
- elif isinstance(v, torch.Tensor) and device is not None:
- new_data[k] = v.to(device=device)
- else:
- new_data[k] = v
- self.data = new_data
- return self
- class FeatureExtractionMixin(PushToHubMixin):
- """
- This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature
- extractors.
- """
- _auto_class = None
- def __init__(self, **kwargs):
- """Set elements of `kwargs` as attributes."""
- # Pop "processor_class" as it should be saved as private attribute
- self._processor_class = kwargs.pop("processor_class", None)
- # Additional attributes without default values
- for key, value in kwargs.items():
- try:
- setattr(self, key, value)
- except AttributeError as err:
- logger.error(f"Can't set {key} with value {value} for {self}")
- raise err
- def _set_processor_class(self, processor_class: str):
- """Sets processor class as an attribute."""
- self._processor_class = processor_class
- @classmethod
- def from_pretrained(
- cls,
- pretrained_model_name_or_path: Union[str, os.PathLike],
- cache_dir: Optional[Union[str, os.PathLike]] = None,
- force_download: bool = False,
- local_files_only: bool = False,
- token: Optional[Union[str, bool]] = None,
- revision: str = "main",
- **kwargs,
- ):
- r"""
- Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a
- derived class of [`SequenceFeatureExtractor`].
- Args:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a feature extractor file saved using the
- [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g.,
- `./my_model_directory/`.
- - a path or url to a saved feature extractor JSON *file*, e.g.,
- `./my_model_directory/preprocessor_config.json`.
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
- standard cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the feature extractor files and override the cached versions
- if they exist.
- resume_download:
- Deprecated and ignored. All downloads are now resumed by default when possible.
- Will be removed in v5 of Transformers.
- proxies (`Dict[str, str]`, *optional*):
- A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
- 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
- token (`str` or `bool`, *optional*):
- The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
- the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
- revision (`str`, *optional*, defaults to `"main"`):
- The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
- git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
- identifier allowed by git.
- <Tip>
- To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`.
- </Tip>
- return_unused_kwargs (`bool`, *optional*, defaults to `False`):
- If `False`, then this function returns just the final feature extractor object. If `True`, then this
- functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
- consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
- `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
- kwargs (`Dict[str, Any]`, *optional*):
- The values in kwargs of any keys which are feature extractor attributes will be used to override the
- loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
- controlled by the `return_unused_kwargs` keyword parameter.
- Returns:
- A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`].
- Examples:
- ```python
- # We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a
- # derived class: *Wav2Vec2FeatureExtractor*
- feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
- "facebook/wav2vec2-base-960h"
- ) # Download feature_extraction_config from huggingface.co and cache.
- feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
- "./test/saved_model/"
- ) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')*
- feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json")
- feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
- "facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False
- )
- assert feature_extractor.return_attention_mask is False
- feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained(
- "facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True
- )
- assert feature_extractor.return_attention_mask is False
- assert unused_kwargs == {"foo": False}
- ```"""
- kwargs["cache_dir"] = cache_dir
- kwargs["force_download"] = force_download
- kwargs["local_files_only"] = local_files_only
- kwargs["revision"] = revision
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if token is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- token = use_auth_token
- if token is not None:
- kwargs["token"] = token
- feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
- return cls.from_dict(feature_extractor_dict, **kwargs)
- def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
- """
- Save a feature_extractor object to the directory `save_directory`, so that it can be re-loaded using the
- [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] class method.
- Args:
- save_directory (`str` or `os.PathLike`):
- Directory where the feature extractor JSON file will be saved (will be created if it does not exist).
- push_to_hub (`bool`, *optional*, defaults to `False`):
- Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
- repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
- namespace).
- kwargs (`Dict[str, Any]`, *optional*):
- Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
- """
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if kwargs.get("token", None) is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- kwargs["token"] = use_auth_token
- if os.path.isfile(save_directory):
- raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
- os.makedirs(save_directory, exist_ok=True)
- if push_to_hub:
- commit_message = kwargs.pop("commit_message", None)
- repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
- repo_id = self._create_repo(repo_id, **kwargs)
- files_timestamps = self._get_files_timestamps(save_directory)
- # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
- # loaded from the Hub.
- if self._auto_class is not None:
- custom_object_save(self, save_directory, config=self)
- # If we save using the predefined names, we can load using `from_pretrained`
- output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME)
- self.to_json_file(output_feature_extractor_file)
- logger.info(f"Feature extractor saved in {output_feature_extractor_file}")
- if push_to_hub:
- self._upload_modified_files(
- save_directory,
- repo_id,
- files_timestamps,
- commit_message=commit_message,
- token=kwargs.get("token"),
- )
- return [output_feature_extractor_file]
- @classmethod
- def get_feature_extractor_dict(
- cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
- ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
- """
- From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
- feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] using `from_dict`.
- Parameters:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
- Returns:
- `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object.
- """
- cache_dir = kwargs.pop("cache_dir", None)
- force_download = kwargs.pop("force_download", False)
- resume_download = kwargs.pop("resume_download", None)
- proxies = kwargs.pop("proxies", None)
- subfolder = kwargs.pop("subfolder", None)
- token = kwargs.pop("token", None)
- use_auth_token = kwargs.pop("use_auth_token", None)
- local_files_only = kwargs.pop("local_files_only", False)
- revision = kwargs.pop("revision", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if token is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- token = use_auth_token
- from_pipeline = kwargs.pop("_from_pipeline", None)
- from_auto_class = kwargs.pop("_from_auto", False)
- user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class}
- if from_pipeline is not None:
- user_agent["using_pipeline"] = from_pipeline
- if is_offline_mode() and not local_files_only:
- logger.info("Offline mode: forcing local_files_only=True")
- local_files_only = True
- pretrained_model_name_or_path = str(pretrained_model_name_or_path)
- is_local = os.path.isdir(pretrained_model_name_or_path)
- if os.path.isdir(pretrained_model_name_or_path):
- feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME)
- if os.path.isfile(pretrained_model_name_or_path):
- resolved_feature_extractor_file = pretrained_model_name_or_path
- is_local = True
- elif is_remote_url(pretrained_model_name_or_path):
- feature_extractor_file = pretrained_model_name_or_path
- resolved_feature_extractor_file = download_url(pretrained_model_name_or_path)
- else:
- feature_extractor_file = FEATURE_EXTRACTOR_NAME
- try:
- # Load from local folder or from cache or download from model Hub and cache
- resolved_feature_extractor_file = cached_file(
- pretrained_model_name_or_path,
- feature_extractor_file,
- cache_dir=cache_dir,
- force_download=force_download,
- proxies=proxies,
- resume_download=resume_download,
- local_files_only=local_files_only,
- subfolder=subfolder,
- token=token,
- user_agent=user_agent,
- revision=revision,
- )
- except EnvironmentError:
- # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
- # the original exception.
- raise
- except Exception:
- # For any other exception, we throw a generic error.
- raise EnvironmentError(
- f"Can't load feature extractor for '{pretrained_model_name_or_path}'. If you were trying to load"
- " it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
- f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
- f" directory containing a {FEATURE_EXTRACTOR_NAME} file"
- )
- try:
- # Load feature_extractor dict
- with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader:
- text = reader.read()
- feature_extractor_dict = json.loads(text)
- except json.JSONDecodeError:
- raise EnvironmentError(
- f"It looks like the config file at '{resolved_feature_extractor_file}' is not a valid JSON file."
- )
- if is_local:
- logger.info(f"loading configuration file {resolved_feature_extractor_file}")
- else:
- logger.info(
- f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
- )
- if not is_local:
- if "auto_map" in feature_extractor_dict:
- feature_extractor_dict["auto_map"] = add_model_info_to_auto_map(
- feature_extractor_dict["auto_map"], pretrained_model_name_or_path
- )
- if "custom_pipelines" in feature_extractor_dict:
- feature_extractor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
- feature_extractor_dict["custom_pipelines"], pretrained_model_name_or_path
- )
- return feature_extractor_dict, kwargs
- @classmethod
- def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor:
- """
- Instantiates a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a Python dictionary of
- parameters.
- Args:
- feature_extractor_dict (`Dict[str, Any]`):
- Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be
- retrieved from a pretrained checkpoint by leveraging the
- [`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method.
- kwargs (`Dict[str, Any]`):
- Additional parameters from which to initialize the feature extractor object.
- Returns:
- [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature extractor object instantiated from those
- parameters.
- """
- return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
- # Update feature_extractor with kwargs if needed
- to_remove = []
- for key, value in kwargs.items():
- if key in feature_extractor_dict:
- feature_extractor_dict[key] = value
- to_remove.append(key)
- for key in to_remove:
- kwargs.pop(key, None)
- feature_extractor = cls(**feature_extractor_dict)
- logger.info(f"Feature extractor {feature_extractor}")
- if return_unused_kwargs:
- return feature_extractor, kwargs
- else:
- return feature_extractor
- def to_dict(self) -> Dict[str, Any]:
- """
- Serializes this instance to a Python dictionary. Returns:
- `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
- """
- output = copy.deepcopy(self.__dict__)
- output["feature_extractor_type"] = self.__class__.__name__
- if "mel_filters" in output:
- del output["mel_filters"]
- if "window" in output:
- del output["window"]
- return output
- @classmethod
- def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor:
- """
- Instantiates a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] from the path to
- a JSON file of parameters.
- Args:
- json_file (`str` or `os.PathLike`):
- Path to the JSON file containing the parameters.
- Returns:
- A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature_extractor
- object instantiated from that JSON file.
- """
- with open(json_file, "r", encoding="utf-8") as reader:
- text = reader.read()
- feature_extractor_dict = json.loads(text)
- return cls(**feature_extractor_dict)
- def to_json_string(self) -> str:
- """
- Serializes this instance to a JSON string.
- Returns:
- `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
- """
- dictionary = self.to_dict()
- for key, value in dictionary.items():
- if isinstance(value, np.ndarray):
- dictionary[key] = value.tolist()
- # make sure private name "_processor_class" is correctly
- # saved as "processor_class"
- _processor_class = dictionary.pop("_processor_class", None)
- if _processor_class is not None:
- dictionary["processor_class"] = _processor_class
- return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
- def to_json_file(self, json_file_path: Union[str, os.PathLike]):
- """
- Save this instance to a JSON file.
- Args:
- json_file_path (`str` or `os.PathLike`):
- Path to the JSON file in which this feature_extractor instance's parameters will be saved.
- """
- with open(json_file_path, "w", encoding="utf-8") as writer:
- writer.write(self.to_json_string())
- def __repr__(self):
- return f"{self.__class__.__name__} {self.to_json_string()}"
- @classmethod
- def register_for_auto_class(cls, auto_class="AutoFeatureExtractor"):
- """
- Register this class with a given auto class. This should only be used for custom feature extractors as the ones
- in the library are already mapped with `AutoFeatureExtractor`.
- <Tip warning={true}>
- This API is experimental and may have some slight breaking changes in the next releases.
- </Tip>
- Args:
- auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`):
- The auto class to register this new feature extractor with.
- """
- if not isinstance(auto_class, str):
- auto_class = auto_class.__name__
- import transformers.models.auto as auto_module
- if not hasattr(auto_module, auto_class):
- raise ValueError(f"{auto_class} is not a valid auto class.")
- cls._auto_class = auto_class
- FeatureExtractionMixin.push_to_hub = copy_func(FeatureExtractionMixin.push_to_hub)
- if FeatureExtractionMixin.push_to_hub.__doc__ is not None:
- FeatureExtractionMixin.push_to_hub.__doc__ = FeatureExtractionMixin.push_to_hub.__doc__.format(
- object="feature extractor", object_class="AutoFeatureExtractor", object_files="feature extractor file"
- )
|