| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- # coding=utf-8
- # Copyright 2023-present the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .integrations import (
- is_optuna_available,
- is_ray_tune_available,
- is_sigopt_available,
- is_wandb_available,
- run_hp_search_optuna,
- run_hp_search_ray,
- run_hp_search_sigopt,
- run_hp_search_wandb,
- )
- from .trainer_utils import (
- HPSearchBackend,
- default_hp_space_optuna,
- default_hp_space_ray,
- default_hp_space_sigopt,
- default_hp_space_wandb,
- )
- from .utils import logging
- logger = logging.get_logger(__name__)
- class HyperParamSearchBackendBase:
- name: str
- pip_package: str = None
- @staticmethod
- def is_available():
- raise NotImplementedError
- def run(self, trainer, n_trials: int, direction: str, **kwargs):
- raise NotImplementedError
- def default_hp_space(self, trial):
- raise NotImplementedError
- def ensure_available(self):
- if not self.is_available():
- raise RuntimeError(
- f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
- )
- @classmethod
- def pip_install(cls):
- return f"`pip install {cls.pip_package or cls.name}`"
- class OptunaBackend(HyperParamSearchBackendBase):
- name = "optuna"
- @staticmethod
- def is_available():
- return is_optuna_available()
- def run(self, trainer, n_trials: int, direction: str, **kwargs):
- return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)
- def default_hp_space(self, trial):
- return default_hp_space_optuna(trial)
- class RayTuneBackend(HyperParamSearchBackendBase):
- name = "ray"
- pip_package = "'ray[tune]'"
- @staticmethod
- def is_available():
- return is_ray_tune_available()
- def run(self, trainer, n_trials: int, direction: str, **kwargs):
- return run_hp_search_ray(trainer, n_trials, direction, **kwargs)
- def default_hp_space(self, trial):
- return default_hp_space_ray(trial)
- class SigOptBackend(HyperParamSearchBackendBase):
- name = "sigopt"
- @staticmethod
- def is_available():
- return is_sigopt_available()
- def run(self, trainer, n_trials: int, direction: str, **kwargs):
- return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)
- def default_hp_space(self, trial):
- return default_hp_space_sigopt(trial)
- class WandbBackend(HyperParamSearchBackendBase):
- name = "wandb"
- @staticmethod
- def is_available():
- return is_wandb_available()
- def run(self, trainer, n_trials: int, direction: str, **kwargs):
- return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)
- def default_hp_space(self, trial):
- return default_hp_space_wandb(trial)
- ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
- HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
- }
- def default_hp_search_backend() -> str:
- available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
- if len(available_backends) > 0:
- name = available_backends[0].name
- if len(available_backends) > 1:
- logger.info(
- f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
- )
- return name
- raise RuntimeError(
- "No hyperparameter search backend available.\n"
- + "\n".join(
- f" - To install {backend.name} run {backend.pip_install()}"
- for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
- )
- )
|