| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554 |
- # coding=utf-8
- # Copyright 2020 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import json
- import os
- import warnings
- from io import BytesIO
- from typing import Any, Dict, List, Optional, Tuple, Union
- import numpy as np
- import requests
- from .dynamic_module_utils import custom_object_save
- from .feature_extraction_utils import BatchFeature as BaseBatchFeature
- from .utils import (
- IMAGE_PROCESSOR_NAME,
- PushToHubMixin,
- add_model_info_to_auto_map,
- add_model_info_to_custom_pipelines,
- cached_file,
- copy_func,
- download_url,
- is_offline_mode,
- is_remote_url,
- is_vision_available,
- logging,
- )
- if is_vision_available():
- from PIL import Image
- logger = logging.get_logger(__name__)
- # TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
- # We override the class string here, but logic is the same.
- class BatchFeature(BaseBatchFeature):
- r"""
- Holds the output of the image processor specific `__call__` methods.
- This class is derived from a python dictionary and can be used as a dictionary.
- Args:
- data (`dict`):
- Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
- tensor_type (`Union[None, str, TensorType]`, *optional*):
- You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
- initialization.
- """
- # TODO: (Amy) - factor out the common parts of this and the feature extractor
- class ImageProcessingMixin(PushToHubMixin):
- """
- This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
- extractors.
- """
- _auto_class = None
- def __init__(self, **kwargs):
- """Set elements of `kwargs` as attributes."""
- # This key was saved while we still used `XXXFeatureExtractor` for image processing. Now we use
- # `XXXImageProcessor`, this attribute and its value are misleading.
- kwargs.pop("feature_extractor_type", None)
- # Pop "processor_class" as it should be saved as private attribute
- self._processor_class = kwargs.pop("processor_class", None)
- # Additional attributes without default values
- for key, value in kwargs.items():
- try:
- setattr(self, key, value)
- except AttributeError as err:
- logger.error(f"Can't set {key} with value {value} for {self}")
- raise err
- def _set_processor_class(self, processor_class: str):
- """Sets processor class as an attribute."""
- self._processor_class = processor_class
- @classmethod
- def from_pretrained(
- cls,
- pretrained_model_name_or_path: Union[str, os.PathLike],
- cache_dir: Optional[Union[str, os.PathLike]] = None,
- force_download: bool = False,
- local_files_only: bool = False,
- token: Optional[Union[str, bool]] = None,
- revision: str = "main",
- **kwargs,
- ):
- r"""
- Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
- Args:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- This can be either:
- - a string, the *model id* of a pretrained image_processor hosted inside a model repo on
- huggingface.co.
- - a path to a *directory* containing a image processor file saved using the
- [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
- `./my_model_directory/`.
- - a path or url to a saved image processor JSON *file*, e.g.,
- `./my_model_directory/preprocessor_config.json`.
- cache_dir (`str` or `os.PathLike`, *optional*):
- Path to a directory in which a downloaded pretrained model image processor should be cached if the
- standard cache should not be used.
- force_download (`bool`, *optional*, defaults to `False`):
- Whether or not to force to (re-)download the image processor files and override the cached versions if
- they exist.
- resume_download:
- Deprecated and ignored. All downloads are now resumed by default when possible.
- Will be removed in v5 of Transformers.
- proxies (`Dict[str, str]`, *optional*):
- A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
- 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
- token (`str` or `bool`, *optional*):
- The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
- the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
- revision (`str`, *optional*, defaults to `"main"`):
- The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
- git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
- identifier allowed by git.
- <Tip>
- To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`.
- </Tip>
- return_unused_kwargs (`bool`, *optional*, defaults to `False`):
- If `False`, then this function returns just the final image processor object. If `True`, then this
- functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
- consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
- `kwargs` which has not been used to update `image_processor` and is otherwise ignored.
- subfolder (`str`, *optional*, defaults to `""`):
- In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
- specify the folder name here.
- kwargs (`Dict[str, Any]`, *optional*):
- The values in kwargs of any keys which are image processor attributes will be used to override the
- loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
- controlled by the `return_unused_kwargs` keyword parameter.
- Returns:
- A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
- Examples:
- ```python
- # We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
- # derived class: *CLIPImageProcessor*
- image_processor = CLIPImageProcessor.from_pretrained(
- "openai/clip-vit-base-patch32"
- ) # Download image_processing_config from huggingface.co and cache.
- image_processor = CLIPImageProcessor.from_pretrained(
- "./test/saved_model/"
- ) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
- image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
- image_processor = CLIPImageProcessor.from_pretrained(
- "openai/clip-vit-base-patch32", do_normalize=False, foo=False
- )
- assert image_processor.do_normalize is False
- image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
- "openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
- )
- assert image_processor.do_normalize is False
- assert unused_kwargs == {"foo": False}
- ```"""
- kwargs["cache_dir"] = cache_dir
- kwargs["force_download"] = force_download
- kwargs["local_files_only"] = local_files_only
- kwargs["revision"] = revision
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if token is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- token = use_auth_token
- if token is not None:
- kwargs["token"] = token
- image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
- return cls.from_dict(image_processor_dict, **kwargs)
- def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
- """
- Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
- [`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
- Args:
- save_directory (`str` or `os.PathLike`):
- Directory where the image processor JSON file will be saved (will be created if it does not exist).
- push_to_hub (`bool`, *optional*, defaults to `False`):
- Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
- repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
- namespace).
- kwargs (`Dict[str, Any]`, *optional*):
- Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
- """
- use_auth_token = kwargs.pop("use_auth_token", None)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if kwargs.get("token", None) is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- kwargs["token"] = use_auth_token
- if os.path.isfile(save_directory):
- raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
- os.makedirs(save_directory, exist_ok=True)
- if push_to_hub:
- commit_message = kwargs.pop("commit_message", None)
- repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
- repo_id = self._create_repo(repo_id, **kwargs)
- files_timestamps = self._get_files_timestamps(save_directory)
- # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
- # loaded from the Hub.
- if self._auto_class is not None:
- custom_object_save(self, save_directory, config=self)
- # If we save using the predefined names, we can load using `from_pretrained`
- output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
- self.to_json_file(output_image_processor_file)
- logger.info(f"Image processor saved in {output_image_processor_file}")
- if push_to_hub:
- self._upload_modified_files(
- save_directory,
- repo_id,
- files_timestamps,
- commit_message=commit_message,
- token=kwargs.get("token"),
- )
- return [output_image_processor_file]
- @classmethod
- def get_image_processor_dict(
- cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
- ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
- """
- From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
- image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
- Parameters:
- pretrained_model_name_or_path (`str` or `os.PathLike`):
- The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
- subfolder (`str`, *optional*, defaults to `""`):
- In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
- specify the folder name here.
- Returns:
- `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
- """
- cache_dir = kwargs.pop("cache_dir", None)
- force_download = kwargs.pop("force_download", False)
- resume_download = kwargs.pop("resume_download", None)
- proxies = kwargs.pop("proxies", None)
- token = kwargs.pop("token", None)
- use_auth_token = kwargs.pop("use_auth_token", None)
- local_files_only = kwargs.pop("local_files_only", False)
- revision = kwargs.pop("revision", None)
- subfolder = kwargs.pop("subfolder", "")
- from_pipeline = kwargs.pop("_from_pipeline", None)
- from_auto_class = kwargs.pop("_from_auto", False)
- if use_auth_token is not None:
- warnings.warn(
- "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
- FutureWarning,
- )
- if token is not None:
- raise ValueError(
- "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
- )
- token = use_auth_token
- user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
- if from_pipeline is not None:
- user_agent["using_pipeline"] = from_pipeline
- if is_offline_mode() and not local_files_only:
- logger.info("Offline mode: forcing local_files_only=True")
- local_files_only = True
- pretrained_model_name_or_path = str(pretrained_model_name_or_path)
- is_local = os.path.isdir(pretrained_model_name_or_path)
- if os.path.isdir(pretrained_model_name_or_path):
- image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
- if os.path.isfile(pretrained_model_name_or_path):
- resolved_image_processor_file = pretrained_model_name_or_path
- is_local = True
- elif is_remote_url(pretrained_model_name_or_path):
- image_processor_file = pretrained_model_name_or_path
- resolved_image_processor_file = download_url(pretrained_model_name_or_path)
- else:
- image_processor_file = IMAGE_PROCESSOR_NAME
- try:
- # Load from local folder or from cache or download from model Hub and cache
- resolved_image_processor_file = cached_file(
- pretrained_model_name_or_path,
- image_processor_file,
- cache_dir=cache_dir,
- force_download=force_download,
- proxies=proxies,
- resume_download=resume_download,
- local_files_only=local_files_only,
- token=token,
- user_agent=user_agent,
- revision=revision,
- subfolder=subfolder,
- )
- except EnvironmentError:
- # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
- # the original exception.
- raise
- except Exception:
- # For any other exception, we throw a generic error.
- raise EnvironmentError(
- f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
- " it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
- f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
- f" directory containing a {IMAGE_PROCESSOR_NAME} file"
- )
- try:
- # Load image_processor dict
- with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
- text = reader.read()
- image_processor_dict = json.loads(text)
- except json.JSONDecodeError:
- raise EnvironmentError(
- f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
- )
- if is_local:
- logger.info(f"loading configuration file {resolved_image_processor_file}")
- else:
- logger.info(
- f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
- )
- if not is_local:
- if "auto_map" in image_processor_dict:
- image_processor_dict["auto_map"] = add_model_info_to_auto_map(
- image_processor_dict["auto_map"], pretrained_model_name_or_path
- )
- if "custom_pipelines" in image_processor_dict:
- image_processor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
- image_processor_dict["custom_pipelines"], pretrained_model_name_or_path
- )
- return image_processor_dict, kwargs
- @classmethod
- def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
- """
- Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
- Args:
- image_processor_dict (`Dict[str, Any]`):
- Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
- retrieved from a pretrained checkpoint by leveraging the
- [`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
- kwargs (`Dict[str, Any]`):
- Additional parameters from which to initialize the image processor object.
- Returns:
- [`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
- parameters.
- """
- image_processor_dict = image_processor_dict.copy()
- return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
- # The `size` parameter is a dict and was previously an int or tuple in feature extractors.
- # We set `size` here directly to the `image_processor_dict` so that it is converted to the appropriate
- # dict within the image processor and isn't overwritten if `size` is passed in as a kwarg.
- if "size" in kwargs and "size" in image_processor_dict:
- image_processor_dict["size"] = kwargs.pop("size")
- if "crop_size" in kwargs and "crop_size" in image_processor_dict:
- image_processor_dict["crop_size"] = kwargs.pop("crop_size")
- image_processor = cls(**image_processor_dict)
- # Update image_processor with kwargs if needed
- to_remove = []
- for key, value in kwargs.items():
- if hasattr(image_processor, key):
- setattr(image_processor, key, value)
- to_remove.append(key)
- for key in to_remove:
- kwargs.pop(key, None)
- logger.info(f"Image processor {image_processor}")
- if return_unused_kwargs:
- return image_processor, kwargs
- else:
- return image_processor
- def to_dict(self) -> Dict[str, Any]:
- """
- Serializes this instance to a Python dictionary.
- Returns:
- `Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
- """
- output = copy.deepcopy(self.__dict__)
- output["image_processor_type"] = self.__class__.__name__
- return output
- @classmethod
- def from_json_file(cls, json_file: Union[str, os.PathLike]):
- """
- Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
- file of parameters.
- Args:
- json_file (`str` or `os.PathLike`):
- Path to the JSON file containing the parameters.
- Returns:
- A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
- instantiated from that JSON file.
- """
- with open(json_file, "r", encoding="utf-8") as reader:
- text = reader.read()
- image_processor_dict = json.loads(text)
- return cls(**image_processor_dict)
- def to_json_string(self) -> str:
- """
- Serializes this instance to a JSON string.
- Returns:
- `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
- """
- dictionary = self.to_dict()
- for key, value in dictionary.items():
- if isinstance(value, np.ndarray):
- dictionary[key] = value.tolist()
- # make sure private name "_processor_class" is correctly
- # saved as "processor_class"
- _processor_class = dictionary.pop("_processor_class", None)
- if _processor_class is not None:
- dictionary["processor_class"] = _processor_class
- return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
- def to_json_file(self, json_file_path: Union[str, os.PathLike]):
- """
- Save this instance to a JSON file.
- Args:
- json_file_path (`str` or `os.PathLike`):
- Path to the JSON file in which this image_processor instance's parameters will be saved.
- """
- with open(json_file_path, "w", encoding="utf-8") as writer:
- writer.write(self.to_json_string())
- def __repr__(self):
- return f"{self.__class__.__name__} {self.to_json_string()}"
- @classmethod
- def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
- """
- Register this class with a given auto class. This should only be used for custom image processors as the ones
- in the library are already mapped with `AutoImageProcessor `.
- <Tip warning={true}>
- This API is experimental and may have some slight breaking changes in the next releases.
- </Tip>
- Args:
- auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
- The auto class to register this new image processor with.
- """
- if not isinstance(auto_class, str):
- auto_class = auto_class.__name__
- import transformers.models.auto as auto_module
- if not hasattr(auto_module, auto_class):
- raise ValueError(f"{auto_class} is not a valid auto class.")
- cls._auto_class = auto_class
- def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
- """
- Convert a single or a list of urls into the corresponding `PIL.Image` objects.
- If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
- returned.
- """
- headers = {
- "User-Agent": (
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
- " Safari/537.36"
- )
- }
- if isinstance(image_url_or_urls, list):
- return [self.fetch_images(x) for x in image_url_or_urls]
- elif isinstance(image_url_or_urls, str):
- response = requests.get(image_url_or_urls, stream=True, headers=headers)
- response.raise_for_status()
- return Image.open(BytesIO(response.content))
- else:
- raise TypeError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
- ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
- if ImageProcessingMixin.push_to_hub.__doc__ is not None:
- ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
- object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
- )
|