| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import warnings
- from math import ceil
- from typing import Iterable, List, Optional, Tuple, Union
- import numpy as np
- from .image_utils import (
- ChannelDimension,
- ImageInput,
- get_channel_dimension_axis,
- get_image_size,
- infer_channel_dimension_format,
- )
- from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor
- from .utils.import_utils import (
- is_flax_available,
- is_tf_available,
- is_torch_available,
- is_torchvision_available,
- is_torchvision_v2_available,
- is_vision_available,
- requires_backends,
- )
- if is_vision_available():
- import PIL
- from .image_utils import PILImageResampling
- if is_torch_available():
- import torch
- if is_tf_available():
- import tensorflow as tf
- if is_flax_available():
- import jax.numpy as jnp
- if is_torchvision_v2_available():
- from torchvision.transforms.v2 import functional as F
- elif is_torchvision_available():
- from torchvision.transforms import functional as F
- def to_channel_dimension_format(
- image: np.ndarray,
- channel_dim: Union[ChannelDimension, str],
- input_channel_dim: Optional[Union[ChannelDimension, str]] = None,
- ) -> np.ndarray:
- """
- Converts `image` to the channel dimension format specified by `channel_dim`.
- Args:
- image (`numpy.ndarray`):
- The image to have its channel dimension set.
- channel_dim (`ChannelDimension`):
- The channel dimension format to use.
- input_channel_dim (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred from the input image.
- Returns:
- `np.ndarray`: The image with the channel dimension set to `channel_dim`.
- """
- if not isinstance(image, np.ndarray):
- raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
- if input_channel_dim is None:
- input_channel_dim = infer_channel_dimension_format(image)
- target_channel_dim = ChannelDimension(channel_dim)
- if input_channel_dim == target_channel_dim:
- return image
- if target_channel_dim == ChannelDimension.FIRST:
- image = image.transpose((2, 0, 1))
- elif target_channel_dim == ChannelDimension.LAST:
- image = image.transpose((1, 2, 0))
- else:
- raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))
- return image
- def rescale(
- image: np.ndarray,
- scale: float,
- data_format: Optional[ChannelDimension] = None,
- dtype: np.dtype = np.float32,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Rescales `image` by `scale`.
- Args:
- image (`np.ndarray`):
- The image to rescale.
- scale (`float`):
- The scale to use for rescaling the image.
- data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the image. If not provided, it will be the same as the input image.
- dtype (`np.dtype`, *optional*, defaults to `np.float32`):
- The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
- extractors.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If not provided, it will be inferred from the input image.
- Returns:
- `np.ndarray`: The rescaled image.
- """
- if not isinstance(image, np.ndarray):
- raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
- rescaled_image = image.astype(np.float64) * scale # Numpy type promotion has changed, so always upcast first
- if data_format is not None:
- rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format)
- rescaled_image = rescaled_image.astype(dtype) # Finally downcast to the desired dtype at the end
- return rescaled_image
- def _rescale_for_pil_conversion(image):
- """
- Detects whether or not the image needs to be rescaled before being converted to a PIL image.
- The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be
- rescaled.
- """
- if image.dtype == np.uint8:
- do_rescale = False
- elif np.allclose(image, image.astype(int)):
- if np.all(0 <= image) and np.all(image <= 255):
- do_rescale = False
- else:
- raise ValueError(
- "The image to be converted to a PIL image contains values outside the range [0, 255], "
- f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
- )
- elif np.all(0 <= image) and np.all(image <= 1):
- do_rescale = True
- else:
- raise ValueError(
- "The image to be converted to a PIL image contains values outside the range [0, 1], "
- f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
- )
- return do_rescale
- def to_pil_image(
- image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"],
- do_rescale: Optional[bool] = None,
- image_mode: Optional[str] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> "PIL.Image.Image":
- """
- Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
- needed.
- Args:
- image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
- The image to convert to the `PIL.Image` format.
- do_rescale (`bool`, *optional*):
- Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
- to `True` if the image type is a floating type and casting to `int` would result in a loss of precision,
- and `False` otherwise.
- image_mode (`str`, *optional*):
- The mode to use for the PIL image. If unset, will use the default mode for the input image type.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If unset, will use the inferred format from the input.
- Returns:
- `PIL.Image.Image`: The converted image.
- """
- requires_backends(to_pil_image, ["vision"])
- if isinstance(image, PIL.Image.Image):
- return image
- # Convert all tensors to numpy arrays before converting to PIL image
- if is_torch_tensor(image) or is_tf_tensor(image):
- image = image.numpy()
- elif is_jax_tensor(image):
- image = np.array(image)
- elif not isinstance(image, np.ndarray):
- raise ValueError("Input image type not supported: {}".format(type(image)))
- # If the channel has been moved to first dim, we put it back at the end.
- image = to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format)
- # If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
- image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image
- # PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed.
- do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale
- if do_rescale:
- image = rescale(image, 255)
- image = image.astype(np.uint8)
- return PIL.Image.fromarray(image, mode=image_mode)
- # Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366
- def get_resize_output_image_size(
- input_image: np.ndarray,
- size: Union[int, Tuple[int, int], List[int], Tuple[int]],
- default_to_square: bool = True,
- max_size: Optional[int] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> tuple:
- """
- Find the target (height, width) dimension of the output image after resizing given the input image and the desired
- size.
- Args:
- input_image (`np.ndarray`):
- The image to resize.
- size (`int` or `Tuple[int, int]` or List[int] or `Tuple[int]`):
- The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
- this.
- If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
- `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
- number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
- default_to_square (`bool`, *optional*, defaults to `True`):
- How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
- (`size`,`size`). If set to `False`, will replicate
- [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
- with support for resizing only the smallest edge and providing an optional `max_size`.
- max_size (`int`, *optional*):
- The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
- than `max_size` after being resized according to `size`, then the image is resized again so that the longer
- edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
- than `size`. Only used if `default_to_square` is `False`.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If unset, will use the inferred format from the input.
- Returns:
- `tuple`: The target (height, width) dimension of the output image after resizing.
- """
- if isinstance(size, (tuple, list)):
- if len(size) == 2:
- return tuple(size)
- elif len(size) == 1:
- # Perform same logic as if size was an int
- size = size[0]
- else:
- raise ValueError("size must have 1 or 2 elements if it is a list or tuple")
- if default_to_square:
- return (size, size)
- height, width = get_image_size(input_image, input_data_format)
- short, long = (width, height) if width <= height else (height, width)
- requested_new_short = size
- new_short, new_long = requested_new_short, int(requested_new_short * long / short)
- if max_size is not None:
- if max_size <= requested_new_short:
- raise ValueError(
- f"max_size = {max_size} must be strictly greater than the requested "
- f"size for the smaller edge size = {size}"
- )
- if new_long > max_size:
- new_short, new_long = int(max_size * new_short / new_long), max_size
- return (new_long, new_short) if width <= height else (new_short, new_long)
- def resize(
- image: np.ndarray,
- size: Tuple[int, int],
- resample: "PILImageResampling" = None,
- reducing_gap: Optional[int] = None,
- data_format: Optional[ChannelDimension] = None,
- return_numpy: bool = True,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Resizes `image` to `(height, width)` specified by `size` using the PIL library.
- Args:
- image (`np.ndarray`):
- The image to resize.
- size (`Tuple[int, int]`):
- The size to use for resizing the image.
- resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
- The filter to user for resampling.
- reducing_gap (`int`, *optional*):
- Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
- the fair resampling. See corresponding Pillow documentation for more details.
- data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the output image. If unset, will use the inferred format from the input.
- return_numpy (`bool`, *optional*, defaults to `True`):
- Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
- returned.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If unset, will use the inferred format from the input.
- Returns:
- `np.ndarray`: The resized image.
- """
- requires_backends(resize, ["vision"])
- resample = resample if resample is not None else PILImageResampling.BILINEAR
- if not len(size) == 2:
- raise ValueError("size must have 2 elements")
- # For all transformations, we want to keep the same data format as the input image unless otherwise specified.
- # The resized image from PIL will always have channels last, so find the input format first.
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- data_format = input_data_format if data_format is None else data_format
- # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
- # the pillow library to resize the image and then convert back to numpy
- do_rescale = False
- if not isinstance(image, PIL.Image.Image):
- do_rescale = _rescale_for_pil_conversion(image)
- image = to_pil_image(image, do_rescale=do_rescale, input_data_format=input_data_format)
- height, width = size
- # PIL images are in the format (width, height)
- resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap)
- if return_numpy:
- resized_image = np.array(resized_image)
- # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
- # so we need to add it back if necessary.
- resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
- # The image is always in channels last format after converting from a PIL image
- resized_image = to_channel_dimension_format(
- resized_image, data_format, input_channel_dim=ChannelDimension.LAST
- )
- # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
- # rescale it back to the original range.
- resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image
- return resized_image
- def normalize(
- image: np.ndarray,
- mean: Union[float, Iterable[float]],
- std: Union[float, Iterable[float]],
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
- image = (image - mean) / std
- Args:
- image (`np.ndarray`):
- The image to normalize.
- mean (`float` or `Iterable[float]`):
- The mean to use for normalization.
- std (`float` or `Iterable[float]`):
- The standard deviation to use for normalization.
- data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the output image. If unset, will use the inferred format from the input.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format of the input image. If unset, will use the inferred format from the input.
- """
- if not isinstance(image, np.ndarray):
- raise ValueError("image must be a numpy array")
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
- num_channels = image.shape[channel_axis]
- # We cast to float32 to avoid errors that can occur when subtracting uint8 values.
- # We preserve the original dtype if it is a float type to prevent upcasting float16.
- if not np.issubdtype(image.dtype, np.floating):
- image = image.astype(np.float32)
- if isinstance(mean, Iterable):
- if len(mean) != num_channels:
- raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
- else:
- mean = [mean] * num_channels
- mean = np.array(mean, dtype=image.dtype)
- if isinstance(std, Iterable):
- if len(std) != num_channels:
- raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
- else:
- std = [std] * num_channels
- std = np.array(std, dtype=image.dtype)
- if input_data_format == ChannelDimension.LAST:
- image = (image - mean) / std
- else:
- image = ((image.T - mean) / std).T
- image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
- return image
- def center_crop(
- image: np.ndarray,
- size: Tuple[int, int],
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- return_numpy: Optional[bool] = None,
- ) -> np.ndarray:
- """
- Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
- the size given, it will be padded (so the returned result will always be of size `size`).
- Args:
- image (`np.ndarray`):
- The image to crop.
- size (`Tuple[int, int]`):
- The target size for the cropped image.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use the inferred format of the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format for the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use the inferred format of the input image.
- return_numpy (`bool`, *optional*):
- Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
- previous ImageFeatureExtractionMixin method.
- - Unset: will return the same type as the input image.
- - `True`: will return a numpy array.
- - `False`: will return a `PIL.Image.Image` object.
- Returns:
- `np.ndarray`: The cropped image.
- """
- requires_backends(center_crop, ["vision"])
- if return_numpy is not None:
- warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning)
- return_numpy = True if return_numpy is None else return_numpy
- if not isinstance(image, np.ndarray):
- raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
- if not isinstance(size, Iterable) or len(size) != 2:
- raise ValueError("size must have 2 elements representing the height and width of the output image")
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- output_data_format = data_format if data_format is not None else input_data_format
- # We perform the crop in (C, H, W) format and then convert to the output format
- image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
- orig_height, orig_width = get_image_size(image, ChannelDimension.FIRST)
- crop_height, crop_width = size
- crop_height, crop_width = int(crop_height), int(crop_width)
- # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
- top = (orig_height - crop_height) // 2
- bottom = top + crop_height
- # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
- left = (orig_width - crop_width) // 2
- right = left + crop_width
- # Check if cropped area is within image boundaries
- if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
- image = image[..., top:bottom, left:right]
- image = to_channel_dimension_format(image, output_data_format, ChannelDimension.FIRST)
- return image
- # Otherwise, we may need to pad if the image is too small. Oh joy...
- new_height = max(crop_height, orig_height)
- new_width = max(crop_width, orig_width)
- new_shape = image.shape[:-2] + (new_height, new_width)
- new_image = np.zeros_like(image, shape=new_shape)
- # If the image is too small, pad it with zeros
- top_pad = ceil((new_height - orig_height) / 2)
- bottom_pad = top_pad + orig_height
- left_pad = ceil((new_width - orig_width) / 2)
- right_pad = left_pad + orig_width
- new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
- top += top_pad
- bottom += top_pad
- left += left_pad
- right += left_pad
- new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
- new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST)
- if not return_numpy:
- new_image = to_pil_image(new_image)
- return new_image
- def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor":
- center_x, center_y, width, height = bboxes_center.unbind(-1)
- bbox_corners = torch.stack(
- # top left x, top left y, bottom right x, bottom right y
- [(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)],
- dim=-1,
- )
- return bbox_corners
- def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray:
- center_x, center_y, width, height = bboxes_center.T
- bboxes_corners = np.stack(
- # top left x, top left y, bottom right x, bottom right y
- [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
- axis=-1,
- )
- return bboxes_corners
- def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor":
- center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1)
- bboxes_corners = tf.stack(
- # top left x, top left y, bottom right x, bottom right y
- [center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
- axis=-1,
- )
- return bboxes_corners
- # 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
- def center_to_corners_format(bboxes_center: TensorType) -> TensorType:
- """
- Converts bounding boxes from center format to corners format.
- center format: contains the coordinate for the center of the box and its width, height dimensions
- (center_x, center_y, width, height)
- corners format: contains the coodinates for the top-left and bottom-right corners of the box
- (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
- """
- # Function is used during model forward pass, so we use the input framework if possible, without
- # converting to numpy
- if is_torch_tensor(bboxes_center):
- return _center_to_corners_format_torch(bboxes_center)
- elif isinstance(bboxes_center, np.ndarray):
- return _center_to_corners_format_numpy(bboxes_center)
- elif is_tf_tensor(bboxes_center):
- return _center_to_corners_format_tf(bboxes_center)
- raise ValueError(f"Unsupported input type {type(bboxes_center)}")
- def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor":
- top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1)
- b = [
- (top_left_x + bottom_right_x) / 2, # center x
- (top_left_y + bottom_right_y) / 2, # center y
- (bottom_right_x - top_left_x), # width
- (bottom_right_y - top_left_y), # height
- ]
- return torch.stack(b, dim=-1)
- def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray:
- top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T
- bboxes_center = np.stack(
- [
- (top_left_x + bottom_right_x) / 2, # center x
- (top_left_y + bottom_right_y) / 2, # center y
- (bottom_right_x - top_left_x), # width
- (bottom_right_y - top_left_y), # height
- ],
- axis=-1,
- )
- return bboxes_center
- def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor":
- top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1)
- bboxes_center = tf.stack(
- [
- (top_left_x + bottom_right_x) / 2, # center x
- (top_left_y + bottom_right_y) / 2, # center y
- (bottom_right_x - top_left_x), # width
- (bottom_right_y - top_left_y), # height
- ],
- axis=-1,
- )
- return bboxes_center
- def corners_to_center_format(bboxes_corners: TensorType) -> TensorType:
- """
- Converts bounding boxes from corners format to center format.
- corners format: contains the coordinates for the top-left and bottom-right corners of the box
- (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
- center format: contains the coordinate for the center of the box and its the width, height dimensions
- (center_x, center_y, width, height)
- """
- # Inverse function accepts different input types so implemented here too
- if is_torch_tensor(bboxes_corners):
- return _corners_to_center_format_torch(bboxes_corners)
- elif isinstance(bboxes_corners, np.ndarray):
- return _corners_to_center_format_numpy(bboxes_corners)
- elif is_tf_tensor(bboxes_corners):
- return _corners_to_center_format_tf(bboxes_corners)
- raise ValueError(f"Unsupported input type {type(bboxes_corners)}")
- # 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
- # Copyright (c) 2018, Alexander Kirillov
- # All rights reserved.
- def rgb_to_id(color):
- """
- Converts RGB color to unique ID.
- """
- if isinstance(color, np.ndarray) and len(color.shape) == 3:
- if color.dtype == np.uint8:
- color = color.astype(np.int32)
- return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
- return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
- def id_to_rgb(id_map):
- """
- Converts unique ID to RGB color.
- """
- if isinstance(id_map, np.ndarray):
- id_map_copy = id_map.copy()
- rgb_shape = tuple(list(id_map.shape) + [3])
- rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
- for i in range(3):
- rgb_map[..., i] = id_map_copy % 256
- id_map_copy //= 256
- return rgb_map
- color = []
- for _ in range(3):
- color.append(id_map % 256)
- id_map //= 256
- return color
- class PaddingMode(ExplicitEnum):
- """
- Enum class for the different padding modes to use when padding images.
- """
- CONSTANT = "constant"
- REFLECT = "reflect"
- REPLICATE = "replicate"
- SYMMETRIC = "symmetric"
- def pad(
- image: np.ndarray,
- padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
- mode: PaddingMode = PaddingMode.CONSTANT,
- constant_values: Union[float, Iterable[float]] = 0.0,
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Pads the `image` with the specified (height, width) `padding` and `mode`.
- Args:
- image (`np.ndarray`):
- The image to pad.
- padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
- Padding to apply to the edges of the height, width axes. Can be one of three formats:
- - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- - `((before, after),)` yields same before and after pad for height and width.
- - `(pad,)` or int is a shortcut for before = after = pad width for all axes.
- mode (`PaddingMode`):
- The padding mode to use. Can be one of:
- - `"constant"`: pads with a constant value.
- - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
- vector along each axis.
- - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
- constant_values (`float` or `Iterable[float]`, *optional*):
- The value to use for the padding if `mode` is `"constant"`.
- data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use same as the input image.
- input_data_format (`str` or `ChannelDimension`, *optional*):
- The channel dimension format for the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use the inferred format of the input image.
- Returns:
- `np.ndarray`: The padded image.
- """
- if input_data_format is None:
- input_data_format = infer_channel_dimension_format(image)
- def _expand_for_data_format(values):
- """
- Convert values to be in the format expected by np.pad based on the data format.
- """
- if isinstance(values, (int, float)):
- values = ((values, values), (values, values))
- elif isinstance(values, tuple) and len(values) == 1:
- values = ((values[0], values[0]), (values[0], values[0]))
- elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int):
- values = (values, values)
- elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple):
- values = values
- else:
- raise ValueError(f"Unsupported format: {values}")
- # add 0 for channel dimension
- values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0))
- # Add additional padding if there's a batch dimension
- values = (0, *values) if image.ndim == 4 else values
- return values
- padding = _expand_for_data_format(padding)
- if mode == PaddingMode.CONSTANT:
- constant_values = _expand_for_data_format(constant_values)
- image = np.pad(image, padding, mode="constant", constant_values=constant_values)
- elif mode == PaddingMode.REFLECT:
- image = np.pad(image, padding, mode="reflect")
- elif mode == PaddingMode.REPLICATE:
- image = np.pad(image, padding, mode="edge")
- elif mode == PaddingMode.SYMMETRIC:
- image = np.pad(image, padding, mode="symmetric")
- else:
- raise ValueError(f"Invalid padding mode: {mode}")
- image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
- return image
- # TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default
- def convert_to_rgb(image: ImageInput) -> ImageInput:
- """
- Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
- as is.
- Args:
- image (Image):
- The image to convert.
- """
- requires_backends(convert_to_rgb, ["vision"])
- if not isinstance(image, PIL.Image.Image):
- return image
- if image.mode == "RGB":
- return image
- image = image.convert("RGB")
- return image
- def flip_channel_order(
- image: np.ndarray,
- data_format: Optional[ChannelDimension] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> np.ndarray:
- """
- Flips the channel order of the image.
- If the image is in RGB format, it will be converted to BGR and vice versa.
- Args:
- image (`np.ndarray`):
- The image to flip.
- data_format (`ChannelDimension`, *optional*):
- The channel dimension format for the output image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use same as the input image.
- input_data_format (`ChannelDimension`, *optional*):
- The channel dimension format for the input image. Can be one of:
- - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- If unset, will use the inferred format of the input image.
- """
- input_data_format = infer_channel_dimension_format(image) if input_data_format is None else input_data_format
- if input_data_format == ChannelDimension.LAST:
- image = image[..., ::-1]
- elif input_data_format == ChannelDimension.FIRST:
- image = image[::-1, ...]
- else:
- raise ValueError(f"Unsupported channel dimension: {input_data_format}")
- if data_format is not None:
- image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
- return image
- def _cast_tensor_to_float(x):
- if x.is_floating_point():
- return x
- return x.float()
- class FusedRescaleNormalize:
- """
- Rescale and normalize the input image in one step.
- """
- def __init__(self, mean, std, rescale_factor: float = 1.0, inplace: bool = False):
- self.mean = torch.tensor(mean) * (1.0 / rescale_factor)
- self.std = torch.tensor(std) * (1.0 / rescale_factor)
- self.inplace = inplace
- def __call__(self, image: "torch.Tensor"):
- image = _cast_tensor_to_float(image)
- return F.normalize(image, self.mean, self.std, inplace=self.inplace)
- class Rescale:
- """
- Rescale the input image by rescale factor: image *= rescale_factor.
- """
- def __init__(self, rescale_factor: float = 1.0):
- self.rescale_factor = rescale_factor
- def __call__(self, image: "torch.Tensor"):
- image = image * self.rescale_factor
- return image
- class NumpyToTensor:
- """
- Convert a numpy array to a PyTorch tensor.
- """
- def __call__(self, image: np.ndarray):
- # Same as in PyTorch, we assume incoming numpy images are in HWC format
- # c.f. https://github.com/pytorch/vision/blob/61d97f41bc209e1407dcfbd685d2ee2da9c1cdad/torchvision/transforms/functional.py#L154
- return torch.from_numpy(image.transpose(2, 0, 1)).contiguous()
|