| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498 |
- # Copyright 2023 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- "AWQ (Activation aware Weight Quantization) integration file"
- import importlib
- from packaging import version
- from ..activations import ACT2FN
- from ..modeling_utils import PreTrainedModel
- from ..utils import is_auto_awq_available, is_ipex_available, is_torch_available, logging
- from ..utils.quantization_config import (
- AwqBackendPackingMethod,
- AwqConfig,
- AWQLinearVersion,
- ExllamaVersion,
- )
- if is_torch_available():
- import torch
- import torch.nn as nn
- logger = logging.get_logger(__name__)
- AWQ_FUSED_MAPPINGS = {
- "mistral": {
- "attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
- "mlp": ["gate_proj", "up_proj", "down_proj"],
- "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
- "use_alibi": False,
- },
- "mixtral": {
- "attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
- "mlp": ["w1", "w3", "w2"],
- "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
- "use_alibi": False,
- "rope_theta": 1000000.0,
- },
- "llama": {
- "attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
- "mlp": ["gate_proj", "up_proj", "down_proj"],
- "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
- "use_alibi": False,
- },
- "llava": {
- "attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
- "mlp": ["gate_proj", "up_proj", "down_proj"],
- "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
- "use_alibi": False,
- },
- }
- AWQ_SCALES_MAPPINGS = {
- "starcoder2": {"act": "act", "layer_before_act": "c_fc"},
- "RefinedWebModel": {"act": "act", "layer_before_act": "dense_h_to_4h"},
- "falcon": {"act": "act", "layer_before_act": "dense_h_to_4h"},
- "mpt": {"act": "act", "layer_before_act": "up_proj"},
- "gptj": {"act": "act", "layer_before_act": "fc_in"},
- "gpt_neox": {"act": "act", "layer_before_act": "dense_h_to_4h"},
- "gpt_bigcode": {"act": "act", "layer_before_act": "c_fc"},
- "bloom": {"act": "gelu_impl", "layer_before_act": "dense_h_to_4h"},
- }
- def replace_quantization_scales(model, model_type):
- from awq.modules.act import ScaledActivation
- if model_type not in AWQ_SCALES_MAPPINGS:
- return model
- for name, module in model.named_children():
- act_name = AWQ_SCALES_MAPPINGS[model_type]["act"]
- layer_before_act_name = AWQ_SCALES_MAPPINGS[model_type]["layer_before_act"]
- if name == act_name and hasattr(model, layer_before_act_name):
- layer_before_act = getattr(model, AWQ_SCALES_MAPPINGS[model_type]["layer_before_act"])
- size = layer_before_act.out_features
- scale_like = torch.ones(size)
- model._modules[name] = ScaledActivation(module, scale_like)
- _ = replace_quantization_scales(module, model_type)
- return model
- def replace_with_awq_linear(
- model,
- modules_to_not_convert=None,
- quantization_config=None,
- current_key_name=None,
- has_been_replaced=False,
- ) -> bool:
- """
- Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers.
- `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
- conversion has been successfull or not.
- During the module replacement, we also infer the backend to use through the `quantization_config` object.
- Args:
- model (`torch.nn.Module`):
- The model to convert, can be any `torch.nn.Module` instance.
- quantization_config (`AwqConfig`):
- The quantization config object that contains the quantization parameters.
- modules_to_not_convert (`list`, *optional*):
- A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
- converted.
- current_key_name (`list`, *optional*):
- A list that contains the current key name. This is used for recursion and should not be passed by the user.
- has_been_replaced (`bool`, *optional*):
- A boolean that indicates if the conversion has been successful or not. This is used for recursion and
- should not be passed by the user.
- """
- if modules_to_not_convert is None:
- modules_to_not_convert = []
- backend = quantization_config.backend
- if not is_auto_awq_available():
- raise ValueError(
- "AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq"
- )
- if backend == AwqBackendPackingMethod.AUTOAWQ:
- if quantization_config.version == AWQLinearVersion.GEMM:
- from awq.modules.linear.gemm import WQLinear_GEMM
- target_cls = WQLinear_GEMM
- elif quantization_config.version == AWQLinearVersion.GEMV:
- from awq.modules.linear.gemv import WQLinear_GEMV
- target_cls = WQLinear_GEMV
- elif quantization_config.version == AWQLinearVersion.EXLLAMA:
- if quantization_config.exllama_config["version"] == ExllamaVersion.ONE:
- from awq.modules.linear.exllama import WQLinear_Exllama
- target_cls = WQLinear_Exllama
- elif quantization_config.exllama_config["version"] == ExllamaVersion.TWO:
- from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
- target_cls = WQLinear_ExllamaV2
- else:
- raise ValueError(f"Unrecognized Exllama version: {quantization_config.exllama_config['version']}")
- elif quantization_config.version == AWQLinearVersion.IPEX:
- from awq.modules.linear.gemm_ipex import WQLinear_IPEX
- target_cls = WQLinear_IPEX
- else:
- raise ValueError(f"Unrecognized AWQ version: {quantization_config.version}")
- else:
- from awq.quantize.qmodule import WQLinear
- target_cls = WQLinear
- for name, module in model.named_children():
- if current_key_name is None:
- current_key_name = []
- current_key_name.append(name)
- if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
- # Check if the current key is not in the `modules_to_not_convert`
- if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
- in_features = module.in_features
- out_features = module.out_features
- model._modules[name] = target_cls(
- w_bit=quantization_config.bits,
- group_size=quantization_config.group_size,
- in_features=in_features,
- out_features=out_features,
- bias=module.bias is not None,
- dev=module.weight.device,
- )
- has_been_replaced = True
- # Force requires grad to False to avoid unexpected errors
- model._modules[name].requires_grad_(False)
- if len(list(module.children())) > 0:
- _, has_been_replaced = replace_with_awq_linear(
- module,
- modules_to_not_convert=modules_to_not_convert,
- current_key_name=current_key_name,
- quantization_config=quantization_config,
- has_been_replaced=has_been_replaced,
- )
- # Remove the last key for recursion
- current_key_name.pop(-1)
- return model, has_been_replaced
- def get_modules_to_fuse(model, quantization_config):
- """
- Returns the fusing mapping given the quantization config and the model
- Args:
- model (`~PreTrainedModel`):
- The model to fuse - note this model should have been converted into AWQ format beforehand.
- quantization_config (`~transformers.quantization_config.AWQConfig`):
- The quantization configuration to use.
- """
- if not isinstance(model, PreTrainedModel):
- raise TypeError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
- # Always default to `quantization_config.modules_to_fuse`
- if quantization_config.modules_to_fuse is not None:
- current_fused_mapping = quantization_config.modules_to_fuse
- current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
- elif model.config.model_type in AWQ_FUSED_MAPPINGS:
- current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type]
- # Properly deal with the case where we have a multi-modal model as well (e.g. Llava)
- config = model.config.get_text_config(decoder=True)
- # Handle hidden_size, num_attention_heads, num_key_value_heads on our own.
- hidden_size = config.hidden_size
- num_attention_heads = config.num_attention_heads
- num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
- # Fill `current_fused_mapping` with the expected values
- current_fused_mapping["hidden_size"] = hidden_size
- current_fused_mapping["num_attention_heads"] = num_attention_heads
- current_fused_mapping["num_key_value_heads"] = num_key_value_heads
- current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
- else:
- raise ValueError(
- "Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument"
- " in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support."
- )
- return current_fused_mapping
- def fuse_awq_modules(model, quantization_config):
- """
- Optionally fuse some modules in the model to speedup inference.
- Args:
- model (`~PreTrainedModel`):
- The model to fuse - note this model should have been converted into AWQ format beforehand.
- quantization_config (`Union[AwqConfig, dict]`):
- The quantization configuration to use.
- """
- # We need to convert it from dict in order to get an AwqConfig object
- # otherwise the fields `backend` etc. will not be available
- # https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495
- if isinstance(quantization_config, dict):
- quantization_config = AwqConfig.from_dict(quantization_config)
- backend = quantization_config.backend
- modules_to_fuse = get_modules_to_fuse(model, quantization_config)
- modules_to_not_convert = getattr(quantization_config, "modules_to_not_convert", None)
- if backend == AwqBackendPackingMethod.AUTOAWQ:
- from awq.modules.fused.attn import QuantAttentionFused
- from awq.modules.fused.mlp import QuantFusedMLP
- from awq.modules.fused.norm import FasterTransformerRMSNorm
- else:
- raise ValueError("Fusing is only supported for the AutoAWQ backend")
- fused_attention_modules = []
- for name, module in model.named_modules():
- if modules_to_not_convert is not None:
- if any(module_name_to_not_convert in name for module_name_to_not_convert in modules_to_not_convert):
- continue
- # Replace layer norms
- _fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm)
- # Replace MLP layers if awq version is not ipex.
- if quantization_config.version != "ipex":
- _fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP)
- else:
- logger.info("The IPEX version AWQ does not support fuse mlp for now.")
- # Replace attention layers
- attention_has_been_fused = _fuse_awq_attention_layers(
- model, module, modules_to_fuse, name, QuantAttentionFused
- )
- if attention_has_been_fused:
- fused_attention_modules.append(name.split(".")[0])
- # For AWQ fused + Llama we need to set `config._attn_implementation` = "custom" to avoid unexpected behavior and pass
- # `None` attention mask to the fused attention modules as now the attention mask is dropped by our models and dealt
- # by the `AttentionMaskConverter` module.
- if len(fused_attention_modules) > 0:
- for module_name, module in model.named_modules():
- if any(
- module_name in fused_attention_modules for fused_attention_parent_module in fused_attention_modules
- ):
- if hasattr(module, "config") and hasattr(module.config, "_attn_implementation"):
- module.config._attn_implementation = "custom"
- return model
- def _fuse_awq_layernorm(fuse_module_names, module, target_cls):
- """
- Fuse the LayerNorm layers into a target class using autoawq
- Args:
- fuse_module_names (`List[str]`):
- The list of module names to fuse
- module (`nn.Module`):
- The pytorch parent module that has layernorm modules to fuse
- target_cls (`~autoawq.FasterTransformerRMSNorm`):
- The `FasterTransformerRMSNorm` class as it only supports that class
- for now.
- """
- for module_name in fuse_module_names:
- if hasattr(module, module_name):
- old_module = getattr(module, module_name)
- module._modules[module_name] = target_cls(
- old_module.weight,
- old_module.variance_epsilon,
- ).to(old_module.weight.device)
- del old_module
- def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls):
- """
- Fuse the MLP layers into a target class using autoawq
- Args:
- model (`~PreTrainedModel`):
- The input pretrained model
- current_module_name (`str`):
- The current submodule name
- fuse_module_names (`List[str]`):
- The list of module names to fuse. For the MLP layers it has to be an array
- of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers)
- module (`nn.Module`):
- The pytorch parent module that has layernorm modules to fuse
- target_cls (`~autoawq.QuantFusedMLP`):
- The `QuantFusedMLP` class as it only supports that class
- for now.
- """
- if len(fuse_module_names) == 0:
- return
- if hasattr(module, fuse_module_names[0]):
- gate_proj = getattr(module, fuse_module_names[0])
- up_proj = getattr(module, fuse_module_names[1])
- down_proj = getattr(module, fuse_module_names[2])
- previous_device = gate_proj.qweight.device
- # Deal also with the case model has `text_config` attribute
- config = model.config.get_text_config(decoder=True)
- hidden_act = config.hidden_act
- activation_fn = ACT2FN[hidden_act]
- new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn)
- parent_name, child_name = current_module_name.rsplit(".", 1)
- parent = model.get_submodule(parent_name)
- setattr(parent, child_name, new_module.to(previous_device))
- del gate_proj, up_proj, down_proj
- def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls):
- """
- Fuse the Attention layers into a target class using autoawq
- Args:
- model (`~PreTrainedModel`):
- The input pretrained model
- module (`nn.Module`):
- The pytorch parent module that has layernorm modules to fuse
- modules_to_fuse (`List[str]`):
- The module fusing mapping. The dictionary has to contain a field `attention` with attention module names
- in the correct order: q, k, v, o layer
- current_module_name (`str`):
- The current submodule name
- target_cls (`~autoawq.QuantAttentionFused`):
- The `QuantAttentionFused` class as it only supports that class
- for now.
- """
- from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
- module_has_been_fused = False
- if len(modules_to_fuse["attention"]) == 0:
- return module_has_been_fused
- if hasattr(module, modules_to_fuse["attention"][0]):
- # First, we pack the QKV layers together
- q_proj = getattr(module, modules_to_fuse["attention"][0])
- if isinstance(q_proj, WQLinear_GEMV):
- linear_target_cls = WQLinear_GEMV
- cat_dim = 0
- elif isinstance(q_proj, WQLinear_GEMM):
- linear_target_cls = WQLinear_GEMM
- cat_dim = 1
- elif is_ipex_available() and version.parse(importlib.metadata.version("autoawq")) > version.parse("0.2.6"):
- from awq.modules.linear import WQLinear_IPEX
- if isinstance(q_proj, WQLinear_IPEX):
- linear_target_cls = WQLinear_IPEX
- cat_dim = 1
- else:
- raise ValueError("Unsupported q_proj type: {type(q_proj)}")
- previous_device = q_proj.qweight.device
- k_proj = getattr(module, modules_to_fuse["attention"][1])
- v_proj = getattr(module, modules_to_fuse["attention"][2])
- o_proj = getattr(module, modules_to_fuse["attention"][3])
- bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
- qkv_layer = linear_target_cls(
- q_proj.w_bit,
- q_proj.group_size,
- q_proj.in_features,
- q_proj.out_features + k_proj.out_features + v_proj.out_features,
- q_proj.bias is not None,
- next(iter(module.state_dict().values())).device,
- )
- qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim)
- qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim)
- qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim)
- if isinstance(qkv_layer, WQLinear_GEMV):
- qkv_layer.split_k_iters = q_proj.split_k_iters
- qkv_layer.bias = bias
- fused_attention_layer = target_cls(
- modules_to_fuse["hidden_size"],
- modules_to_fuse["num_attention_heads"],
- modules_to_fuse["num_key_value_heads"],
- qkv_layer,
- o_proj,
- previous_device,
- modules_to_fuse["max_seq_len"],
- use_alibi=modules_to_fuse["use_alibi"],
- # The default value in autoawq is set to 10000.0
- rope_theta=modules_to_fuse.get("rope_theta", 10000.0),
- )
- fused_attention_layer.is_hf_transformers = True
- parent_name, child_name = current_module_name.rsplit(".", 1)
- parent = model.get_submodule(parent_name)
- setattr(parent, child_name, fused_attention_layer.to(previous_device))
- del q_proj, k_proj, v_proj, o_proj
- module_has_been_fused = True
- return module_has_been_fused
- def post_init_awq_exllama_modules(model, exllama_config):
- """
- Runs post init for Exllama layers which performs:
- - Weights unpacking, reordering and repacking
- - Devices scratch space allocation
- """
- if exllama_config["version"] == ExllamaVersion.ONE:
- from awq.modules.linear.exllama import exllama_post_init
- model = exllama_post_init(model)
- elif exllama_config["version"] == ExllamaVersion.TWO:
- from awq.modules.linear.exllamav2 import exllamav2_post_init
- model = exllamav2_post_init(
- model,
- max_input_len=exllama_config["max_input_len"],
- max_batch_size=exllama_config["max_batch_size"],
- )
- else:
- raise ValueError(f"Unrecognized Exllama version: {exllama_config['version']}")
- return model
- def post_init_awq_ipex_modules(model):
- """
- Runs post init for IPEX layers which performs:
- - Weights packing, reordering and repacking
- """
- from awq.modules.linear.gemm_ipex import ipex_post_init
- model = ipex_post_init(model)
- return model
|