| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ..utils import is_optimum_quanto_available, is_quanto_available, is_torch_available, logging
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- def replace_with_quanto_layers(
- model,
- quantization_config=None,
- modules_to_not_convert=None,
- current_key_name=None,
- has_been_replaced=False,
- ):
- """
- Public method that recursively replaces the Linear layers of the given model with Quanto quantized layers.
- Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
- Args:
- model (`torch.nn.Module`):
- The model to convert, can be any `torch.nn.Module` instance.
- quantization_config (`AqlmConfig`, defaults to `None`):
- The quantization config object that contains the quantization parameters.
- modules_to_not_convert (`list`, *optional*, defaults to `None`):
- A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
- converted.
- current_key_name (`list`, *optional*, defaults to `None`):
- A list that contains the current key name. This is used for recursion and should not be passed by the user.
- has_been_replaced (`bool`, *optional*, defaults to `None`):
- A boolean that indicates if the conversion has been successful or not. This is used for recursion and
- should not be passed by the user.
- """
- from accelerate import init_empty_weights
- if is_optimum_quanto_available():
- from optimum.quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8
- elif is_quanto_available():
- logger.warning_once(
- "Importing from quanto will be deprecated in v4.47. Please install optimum-quanto instead `pip install optimum-quanto`"
- )
- from quanto import QLayerNorm, QLinear, qfloat8, qint2, qint4, qint8
- w_mapping = {"float8": qfloat8, "int8": qint8, "int4": qint4, "int2": qint2}
- a_mapping = {None: None, "float8": qfloat8, "int8": qint8}
- if modules_to_not_convert is None:
- modules_to_not_convert = []
- for name, module in model.named_children():
- if current_key_name is None:
- current_key_name = []
- current_key_name.append(name)
- if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
- with init_empty_weights():
- if isinstance(module, torch.nn.Linear):
- model._modules[name] = QLinear(
- in_features=module.in_features,
- out_features=module.out_features,
- bias=module.bias is not None,
- dtype=module.weight.dtype,
- weights=w_mapping[quantization_config.weights],
- activations=a_mapping[quantization_config.activations],
- )
- model._modules[name].requires_grad_(False)
- has_been_replaced = True
- elif isinstance(module, torch.nn.LayerNorm):
- if quantization_config.activations is not None:
- model._modules[name] = QLayerNorm(
- module.normalized_shape,
- module.eps,
- module.elementwise_affine,
- module.bias is not None,
- activations=a_mapping[quantization_config.activations],
- )
- has_been_replaced = True
- if len(list(module.children())) > 0:
- _, has_been_replaced = replace_with_quanto_layers(
- module,
- quantization_config=quantization_config,
- modules_to_not_convert=modules_to_not_convert,
- current_key_name=current_key_name,
- has_been_replaced=has_been_replaced,
- )
- # Remove the last key for recursion
- current_key_name.pop(-1)
- return model, has_been_replaced
|