| 123456789101112131415161718192021222324252627282930313233343536 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from torch.utils.data import DataLoader
- from ..utils import is_torch_xla_available
- def tpu_spmd_dataloader(dataloader: DataLoader):
- if is_torch_xla_available():
- import torch_xla.distributed.parallel_loader as pl
- assert isinstance(
- dataloader, pl.MpDeviceLoader
- ), "The dataloader must be a `torch_xla.distributed.parallel_loader.MpDeviceLoader`."
- # This is to support PyTorch/XLA FSDP via SPMD.
- # Here we shard the input data's 0th dim across the fsdp axis.
- import torch_xla.distributed.spmd as xs
- sharding_spec = xs.ShardingSpec(xs.get_global_mesh(), ("fsdp", None))
- dataloader._parallel_loader_kwargs["input_sharding"] = sharding_spec
- return dataloader
- else:
- return dataloader
|