| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- #include "cuda_kernel.h"
- //////////////////////////////////////////////////////////////////////////////////////////////////
- //////////////////////////////////////////////////////////////////////////////////////////////////
- __global__ void index_max_cuda_kernel(
- float *index_vals, // [batch_size, 32, num_block]
- int *indices, // [batch_size, num_block]
- float *max_vals, // [batch_size, A_num_block * 32]
- float *max_vals_scatter, // [batch_size, 32, num_block]
- long batch_size,
- long A_num_block,
- long B_num_block,
- long num_block
- ) {
- long batch_idx = blockIdx.x;
- long thread_idx = threadIdx.x;
- long num_thread = blockDim.x;
- extern __shared__ float buffer[];
- int *max_buffer = (int*)buffer;
- for (int i = 0; i < A_num_block * 32; i = i + num_thread) {
- int idx = i + thread_idx;
- if (idx < A_num_block * 32) {
- max_buffer[idx] = -1e8;
- }
- }
- __syncthreads();
- int *indices_pt = &indices[batch_idx * num_block];
- float *index_vals_pt = &index_vals[batch_idx * num_block * 32];
- for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) {
- int idx = idx_start + thread_idx;
- int A_block_idx = indices_pt[idx % num_block] / B_num_block;
- atomicMax(&max_buffer[A_block_idx * 32 + idx / num_block], (int)(index_vals_pt[idx] * 1000));
- }
- __syncthreads();
-
- float *max_vals_pt = &max_vals[batch_idx * A_num_block * 32];
- for (int i = 0; i < A_num_block * 32; i = i + num_thread) {
- int idx = i + thread_idx;
- if (idx < A_num_block * 32) {
- max_vals_pt[idx] = (float)max_buffer[idx] / 1000.;
- }
- }
-
- float *max_vals_scatter_pt = &max_vals_scatter[batch_idx * num_block * 32];
- for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) {
- int idx = idx_start + thread_idx;
- int A_block_idx = indices_pt[idx % num_block] / B_num_block;
- max_vals_scatter_pt[idx] = (float)max_buffer[A_block_idx * 32 + idx / num_block] / 1000.;
- }
- }
- __global__ void mm_to_sparse_cuda_kernel(
- float *dense_A, // [batch_size, A_num_block, dim, 32]
- float *dense_B, // [batch_size, B_num_block, dim, 32]
- int *indices, // [batch_size, num_block]
- float *sparse_C, // [batch_size, num_block, 32, 32]
- long batch_size,
- long A_num_block,
- long B_num_block,
- long dim,
- long num_block
- ) {
- long batch_idx = blockIdx.y;
- long block_idx = blockIdx.x * blockDim.y + threadIdx.y;
- long thread_idx = threadIdx.x;
- __shared__ float buffer[4096];
- float *A_buffer = &buffer[threadIdx.y * 1024]; // [2, 8, 32]
- float *B_buffer = &buffer[threadIdx.y * 1024 + 512]; // [2, 8, 32]
- long batch_idx__block_idx = batch_idx * num_block + block_idx;
- long AB_block_idx = indices[batch_idx__block_idx];
- float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * dim * 32];
- float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * dim * 32];
- int reg_1_idx = thread_idx / 8; // [0000000011111111222222223333333344444444555555556666666677777777]
- int reg_2_idx = thread_idx % 8; // [0123456701234567012345670123456701234567012345670123456701234567]
- float reg_1[8];
- float reg_2[8];
- float reg_array[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- A_buffer[i * 64 + thread_idx] = dense_A_pt[i * 64 + thread_idx];
- B_buffer[i * 64 + thread_idx] = dense_B_pt[i * 64 + thread_idx];
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[i] = A_buffer[reg_1_idx * 4 + i];
- reg_2[i] = B_buffer[reg_2_idx * 4 + i];
- }
- for (int dim_stride = 1; dim_stride < (dim / 8); dim_stride++) {
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- A_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_A_pt[dim_stride * 256 + i * 64 + thread_idx];
- B_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_B_pt[dim_stride * 256 + i * 64 + thread_idx];
- }
- #pragma unroll
- for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) {
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_1_idx * 4 + i];
- reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_2_idx * 4 + i];
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
- }
- }
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[i] = A_buffer[(dim_stride % 2) * 256 + reg_1_idx * 4 + i];
- reg_2[i] = B_buffer[(dim_stride % 2) * 256 + reg_2_idx * 4 + i];
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
- }
- }
- }
- #pragma unroll
- for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) {
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[256 + mini_dim_idx * 32 + reg_1_idx * 4 + i];
- reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[256 + mini_dim_idx * 32 + reg_2_idx * 4 + i];
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
- }
- }
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
- }
- }
- __syncthreads();
- float *C_buffer = &buffer[threadIdx.y * 1024]; // [32, 32]
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- C_buffer[(reg_2_idx * 4 + j) * 32 + reg_1_idx * 4 + i] = reg_array[i * 4 + j];
- }
- }
- __syncthreads();
- float *sparse_C_pt = &sparse_C[batch_idx__block_idx * 1024];
- #pragma unroll
- for (int i = 0; i < 16; i++) {
- sparse_C_pt[i * 64 + thread_idx] = C_buffer[i * 64 + thread_idx];
- }
- }
- __global__ void sparse_dense_mm_cuda_kernel(
- float *sparse_A, // [batch_size, num_block, 32, 32]
- int *indices, // [batch_size, num_block]
- float *dense_B, // [batch_size, B_num_block, dim, 32]
- float *dense_C, // [batch_size, A_num_block, dim, 32]
- long batch_size,
- long A_num_block,
- long B_num_block,
- long dim,
- long num_block
- ) {
- long batch_idx = blockIdx.y;
- long block_idx = blockIdx.x * blockDim.y + threadIdx.y;
- long thread_idx = threadIdx.x;
- __shared__ float buffer[6144];
- float *A_buffer = &buffer[threadIdx.y * 3072]; // [32, 32]
- float *B_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [32, 64]
- long batch_idx__block_idx = batch_idx * num_block + block_idx;
- float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024];
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- A_buffer[i * 128 + thread_idx] = sparse_A_pt[i * 128 + thread_idx];
- }
- long AB_block_idx = indices[batch_idx__block_idx];
- float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * 32 * dim];
- float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32 * dim];
- // [0000000011111111222222223333333344444444555555556666666677777777]
- // [0123456701234567012345670123456701234567012345670123456701234567]
- int reg_1_idx = thread_idx / 8;
- int reg_2_idx = thread_idx % 8;
- float reg_1[8];
- float reg_2[8];
- float reg_array[16];
- for (int dim_stride = 0; dim_stride < dim; dim_stride = dim_stride + 64) {
- #pragma unroll
- for (int i = 0; i < 16; i++) {
- B_buffer[i * 128 + thread_idx] = dense_B_pt[dim_stride * 32 + i * 128 + thread_idx];
- }
- #pragma unroll
- for (int i = 0; i < 16; i++) {
- reg_array[i] = 0;
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[i] = B_buffer[(reg_1_idx * 4 + i) * 32];
- reg_2[i] = A_buffer[reg_2_idx * 4 + i];
- }
- #pragma unroll
- for (int mini_dim_idx = 1; mini_dim_idx < 32; mini_dim_idx++) {
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- reg_1[(mini_dim_idx % 2) * 4 + i] = B_buffer[(reg_1_idx * 4 + i) * 32 + mini_dim_idx];
- reg_2[(mini_dim_idx % 2) * 4 + i] = A_buffer[mini_dim_idx * 32 + reg_2_idx * 4 + i];
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
- }
- }
- }
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
- }
- }
- __syncthreads();
- float *C_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [64, 32]
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- #pragma unroll
- for (int j = 0; j < 4; j++) {
- C_buffer[(reg_1_idx * 4 + i) * 32 + reg_2_idx * 4 + j] = reg_array[i * 4 + j];
- }
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < 16; i++) {
- atomicAdd(&dense_C_pt[dim_stride * 32 + i * 128 + thread_idx], C_buffer[i * 128 + thread_idx]);
- }
- __syncthreads();
- }
- }
- __global__ void reduce_sum_cuda_kernel(
- float *sparse_A, // [batch_size, num_block, 32, 32]
- int *indices, // [batch_size, num_block]
- float *dense_C, // [batch_size, A_num_block, 32]
- long batch_size,
- long A_num_block,
- long B_num_block,
- long num_block
- ) {
- long batch_idx = blockIdx.y;
- long block_idx = blockIdx.x * blockDim.y + threadIdx.y;
- long thread_idx = threadIdx.x;
- long batch_idx__block_idx = batch_idx * num_block + block_idx;
- long AB_block_idx = indices[batch_idx__block_idx];
- float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024];
- float reg_array[16];
- float value = 0;
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- reg_array[i] = sparse_A_pt[i * 32 + thread_idx];
- }
- #pragma unroll
- for (int stride = 8; stride < 32; stride = stride + 8) {
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- reg_array[(stride + i) % 16] = sparse_A_pt[(stride + i) * 32 + thread_idx];
- }
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- value = value + reg_array[(stride - 8 + i) % 16];
- }
- }
- #pragma unroll
- for (int i = 0; i < 8; i++) {
- value = value + reg_array[8 + i];
- }
- float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32];
- atomicAdd(&dense_C_pt[thread_idx], value);
- }
- __global__ void scatter_cuda_kernel(
- float *dense_A, // [batch_size, A_num_block, 32]
- int *indices, // [batch_size, num_block]
- float *sparse_C, // [batch_size, num_block, 32, 32]
- long batch_size,
- long A_num_block,
- long B_num_block,
- long num_block
- ) {
- long batch_idx = blockIdx.y;
- long block_idx = blockIdx.x * blockDim.y + threadIdx.y;
- long thread_idx = threadIdx.x;
- long batch_idx__block_idx = batch_idx * num_block + block_idx;
- long AB_block_idx = indices[batch_idx__block_idx];
- float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32];
- float *sparse_C_pt = &sparse_C[(batch_idx * num_block + block_idx) * 1024];
- float value = dense_A_pt[thread_idx];
- #pragma unroll
- for (int i = 0; i < 32; i++) {
- sparse_C_pt[i * 32 + thread_idx] = value;
- }
- }
|