| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch - Flax general utilities."""
- import os
- from pickle import UnpicklingError
- from typing import Dict, Tuple
- import jax
- import jax.numpy as jnp
- import numpy as np
- from flax.serialization import from_bytes
- from flax.traverse_util import flatten_dict, unflatten_dict
- import transformers
- from . import is_safetensors_available, is_torch_available
- from .utils import logging
- if is_torch_available():
- import torch
- if is_safetensors_available():
- from safetensors import safe_open
- from safetensors.flax import load_file as safe_load_file
- logger = logging.get_logger(__name__)
- #####################
- # PyTorch => Flax #
- #####################
- def load_pytorch_checkpoint_in_flax_state_dict(
- flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False
- ):
- """Load pytorch checkpoints in a flax model"""
- if not is_sharded:
- pt_path = os.path.abspath(pytorch_checkpoint_path)
- logger.info(f"Loading PyTorch weights from {pt_path}")
- if pt_path.endswith(".safetensors"):
- pt_state_dict = {}
- with safe_open(pt_path, framework="flax") as f:
- for k in f.keys():
- pt_state_dict[k] = f.get_tensor(k)
- else:
- try:
- import torch # noqa: F401
- from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # noqa: F401
- except (ImportError, ModuleNotFoundError):
- logger.error(
- "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
- " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
- " instructions."
- )
- raise
- weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
- pt_state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg)
- logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.")
- flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model)
- else:
- # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
- flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model)
- return flax_state_dict
- def rename_key_and_reshape_tensor(
- pt_tuple_key: Tuple[str],
- pt_tensor: np.ndarray,
- random_flax_state_dict: Dict[str, jnp.ndarray],
- model_prefix: str,
- ) -> (Tuple[str], np.ndarray):
- """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
- def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool:
- """Checks if `key` of `(prefix,) + key` is in random_flax_state_dict"""
- return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0
- # layer norm
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
- if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
- return renamed_pt_tuple_key, pt_tensor
- # batch norm layer mean
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",)
- if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
- return renamed_pt_tuple_key, pt_tensor
- # batch norm layer var
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",)
- if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
- return renamed_pt_tuple_key, pt_tensor
- # embedding
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
- if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
- return renamed_pt_tuple_key, pt_tensor
- # conv layer
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
- if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key):
- pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
- return renamed_pt_tuple_key, pt_tensor
- # linear layer
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
- if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
- pt_tensor = pt_tensor.T
- return renamed_pt_tuple_key, pt_tensor
- # old PyTorch layer norm weight
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
- if pt_tuple_key[-1] == "gamma":
- return renamed_pt_tuple_key, pt_tensor
- # old PyTorch layer norm bias
- renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
- if pt_tuple_key[-1] == "beta":
- return renamed_pt_tuple_key, pt_tensor
- # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
- name = None
- if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
- name = pt_tuple_key[-2] + "_g"
- elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
- name = pt_tuple_key[-2] + "_v"
- if name is not None:
- renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,)
- return renamed_pt_tuple_key, pt_tensor
- return pt_tuple_key, pt_tensor
- def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
- # convert pytorch tensor to numpy
- from_bin = is_torch_available() and isinstance(next(iter(pt_state_dict.values())), torch.Tensor)
- bfloat16 = torch.bfloat16 if from_bin else "bfloat16"
- weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
- if from_bin:
- for k, v in pt_state_dict.items():
- # numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision
- if v.dtype == bfloat16:
- v = v.float()
- pt_state_dict[k] = v.cpu().numpy()
- model_prefix = flax_model.base_model_prefix
- # use params dict if the model contains batch norm layers
- if "params" in flax_model.params:
- flax_model_params = flax_model.params["params"]
- else:
- flax_model_params = flax_model.params
- random_flax_state_dict = flatten_dict(flax_model_params)
- # add batch_stats keys,values to dict
- if "batch_stats" in flax_model.params:
- flax_batch_stats = flatten_dict(flax_model.params["batch_stats"])
- random_flax_state_dict.update(flax_batch_stats)
- flax_state_dict = {}
- load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
- model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
- )
- load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
- model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
- )
- # Need to change some parameters name to match Flax names
- for pt_key, pt_tensor in pt_state_dict.items():
- pt_tuple_key = tuple(pt_key.split("."))
- is_bfloat_16 = weight_dtypes[pt_key] == bfloat16
- # remove base model prefix if necessary
- has_base_model_prefix = pt_tuple_key[0] == model_prefix
- if load_model_with_head_into_base_model and has_base_model_prefix:
- pt_tuple_key = pt_tuple_key[1:]
- # Correctly rename weight parameters
- flax_key, flax_tensor = rename_key_and_reshape_tensor(
- pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
- )
- # add model prefix if necessary
- require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
- if load_base_model_into_model_with_head and require_base_model_prefix:
- flax_key = (model_prefix,) + flax_key
- if flax_key in random_flax_state_dict:
- if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
- raise ValueError(
- f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
- f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
- )
- # add batch stats if the model contains batchnorm layers
- if "batch_stats" in flax_model.params:
- if "mean" in flax_key[-1] or "var" in flax_key[-1]:
- flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
- continue
- # remove num_batches_tracked key
- if "num_batches_tracked" in flax_key[-1]:
- flax_state_dict.pop(flax_key, None)
- continue
- # also add unexpected weight so that warning is thrown
- flax_state_dict[("params",) + flax_key] = (
- jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
- )
- else:
- # also add unexpected weight so that warning is thrown
- flax_state_dict[flax_key] = (
- jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
- )
- return unflatten_dict(flax_state_dict)
- ############################
- # Sharded Pytorch => Flax #
- ############################
- def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model):
- import torch
- from .pytorch_utils import is_torch_greater_or_equal_than_1_13
- # Load the index
- flax_state_dict = {}
- for shard_file in shard_filenames:
- # load using msgpack utils
- weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
- pt_state_dict = torch.load(shard_file, **weights_only_kwarg)
- weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
- pt_state_dict = {
- k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items()
- }
- model_prefix = flax_model.base_model_prefix
- # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
- if "batch_stats" in flax_model.params:
- flax_model_params = flax_model.params["params"]
- random_flax_state_dict = flatten_dict(flax_model_params)
- random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"]))
- else:
- flax_model_params = flax_model.params
- random_flax_state_dict = flatten_dict(flax_model_params)
- load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
- model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
- )
- load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
- model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
- )
- # Need to change some parameters name to match Flax names
- for pt_key, pt_tensor in pt_state_dict.items():
- pt_tuple_key = tuple(pt_key.split("."))
- is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16
- # remove base model prefix if necessary
- has_base_model_prefix = pt_tuple_key[0] == model_prefix
- if load_model_with_head_into_base_model and has_base_model_prefix:
- pt_tuple_key = pt_tuple_key[1:]
- # Correctly rename weight parameters
- flax_key, flax_tensor = rename_key_and_reshape_tensor(
- pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
- )
- # add model prefix if necessary
- require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
- if load_base_model_into_model_with_head and require_base_model_prefix:
- flax_key = (model_prefix,) + flax_key
- if flax_key in random_flax_state_dict:
- if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
- raise ValueError(
- f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
- f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
- )
- # add batch stats if the model contains batchnorm layers
- if "batch_stats" in flax_model.params:
- if "mean" in flax_key[-1]:
- flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
- continue
- if "var" in flax_key[-1]:
- flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
- continue
- # remove num_batches_tracked key
- if "num_batches_tracked" in flax_key[-1]:
- flax_state_dict.pop(flax_key, None)
- continue
- # also add unexpected weight so that warning is thrown
- flax_state_dict[("params",) + flax_key] = (
- jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
- )
- else:
- # also add unexpected weight so that warning is thrown
- flax_state_dict[flax_key] = (
- jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
- )
- return unflatten_dict(flax_state_dict)
- #####################
- # Flax => PyTorch #
- #####################
- def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path):
- """Load flax checkpoints in a PyTorch model"""
- flax_checkpoint_path = os.path.abspath(flax_checkpoint_path)
- logger.info(f"Loading Flax weights from {flax_checkpoint_path}")
- # import correct flax class
- flax_cls = getattr(transformers, "Flax" + model.__class__.__name__)
- # load flax weight dict
- if flax_checkpoint_path.endswith(".safetensors"):
- flax_state_dict = safe_load_file(flax_checkpoint_path)
- flax_state_dict = unflatten_dict(flax_state_dict, sep=".")
- else:
- with open(flax_checkpoint_path, "rb") as state_f:
- try:
- flax_state_dict = from_bytes(flax_cls, state_f.read())
- except UnpicklingError:
- raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ")
- return load_flax_weights_in_pytorch_model(model, flax_state_dict)
- def load_flax_weights_in_pytorch_model(pt_model, flax_state):
- """Load flax checkpoints in a PyTorch model"""
- try:
- import torch # noqa: F401
- except (ImportError, ModuleNotFoundError):
- logger.error(
- "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
- " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
- " instructions."
- )
- raise
- # check if we have bf16 weights
- is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
- if any(is_type_bf16):
- # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
- # and bf16 is not fully supported in PT yet.
- logger.warning(
- "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
- "before loading those in PyTorch model."
- )
- flax_state = jax.tree_util.tree_map(
- lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
- )
- flax_state_dict = flatten_dict(flax_state)
- pt_model_dict = pt_model.state_dict()
- load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and (
- pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()}
- )
- load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and (
- pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()}
- )
- # keep track of unexpected & missing keys
- unexpected_keys = []
- missing_keys = set(pt_model_dict.keys())
- for flax_key_tuple, flax_tensor in flax_state_dict.items():
- has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix
- require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict
- # adapt flax_key to prepare for loading from/to base model only
- if load_model_with_head_into_base_model and has_base_model_prefix:
- flax_key_tuple = flax_key_tuple[1:]
- elif load_base_model_into_model_with_head and require_base_model_prefix:
- flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple
- # rename flax weights to PyTorch format
- if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict:
- # conv layer
- flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
- flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
- elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict:
- # linear layer
- flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
- flax_tensor = flax_tensor.T
- elif flax_key_tuple[-1] in ["scale", "embedding"]:
- flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
- # adding batch stats from flax batch norm to pt
- elif "mean" in flax_key_tuple[-1]:
- flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",)
- elif "var" in flax_key_tuple[-1]:
- flax_key_tuple = flax_key_tuple[:-1] + ("running_var",)
- if "batch_stats" in flax_state:
- flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header
- else:
- flax_key = ".".join(flax_key_tuple)
- # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
- special_pt_names = {}
- # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
- for key in pt_model_dict:
- key_components = key.split(".")
- name = None
- if key_components[-3::2] == ["parametrizations", "original0"]:
- name = key_components[-2] + "_g"
- elif key_components[-3::2] == ["parametrizations", "original1"]:
- name = key_components[-2] + "_v"
- if name is not None:
- key_components = key_components[:-3] + [name]
- key_to_check = ".".join(key_components)
- special_pt_names[key_to_check] = key
- if flax_key in special_pt_names:
- flax_key = special_pt_names[flax_key]
- if flax_key in pt_model_dict:
- if flax_tensor.shape != pt_model_dict[flax_key].shape:
- raise ValueError(
- f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
- f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
- )
- else:
- # add weight to pytorch dict
- flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
- pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
- # remove from missing keys
- missing_keys.remove(flax_key)
- else:
- # weight is not expected by PyTorch model
- unexpected_keys.append(flax_key)
- pt_model.load_state_dict(pt_model_dict)
- # re-transform missing_keys to list
- missing_keys = list(missing_keys)
- if len(unexpected_keys) > 0:
- logger.warning(
- "Some weights of the Flax model were not used when initializing the PyTorch model"
- f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
- f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
- " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
- f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
- " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
- " FlaxBertForSequenceClassification model)."
- )
- else:
- logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n")
- if len(missing_keys) > 0:
- logger.warning(
- f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
- f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
- " use it for predictions and inference."
- )
- else:
- logger.warning(
- f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"
- "If your task is similar to the task the model of the checkpoint was trained on, "
- f"you can already use {pt_model.__class__.__name__} for predictions without further training."
- )
- return pt_model
|